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Abstract

Complementary techniques are used to investigate the dynamic loading of subsurface cracks in either homogeneous
or non-homogeneous media; the quantities of interest such as the scattered fields and the stress intensity factors are
determined. For homogeneous media, these involve solutions utilising transform methods and the Wiener—Hopf
technique. To ease interpretation, an iterative method based on physical considerations is developed. For special
loadings, invariant integrals are utilised to provide non-trivial extensions of the analysis to non-homogeneous media, at
least insofar as the stress intensity factors are concerned. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dynamic stress loading of cracks, and the related fracture mechanics, is an area that has received
much attention; for a detailed description see Freund (1990), Atkinson and Craster (1995b). There is
particular interest in wave or pulse interactions with cracks that lie beneath surfaces or interfaces, as
material failure or interfacial debonding is often caused by the subsequent growth of cracks. There has also
been resurgent interest in the modelling of fracture in non-homogeneous solids (Craster and Atkinson,
1994; Choi, 1997; Ergiiven and Gross, 1999), as modern fabrication methods and functionally graded
materials become of more use; thus, we also address some aspects of crack-wave interactions in non-
homogeneous media.

Determining the stress fields, and crack tip stress intensity factors, generated by the interaction of stress
waves with cracks, and boundaries, is of fundamental interest in fracture mechanics. It is also of great
interest in the non-destructive evaluation of structures. The scattered field yields information for crack
detection and characterisation, thereby enabling estimates to be made of the location and size of the crack.
The presence of an interface or free surface is a complicating feature and analytical solutions are often
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difficult to obtain (Tsai and Ma, 1992, 1993). In these previous analyses for in-plane loadings the results are
valid until the first wave scattered from the crack returns to the crack after having been reflected by the free
surface. With the addition of an overlying fluid there are no current analyses. For anti-plane loadings the
analysis becomes slightly simpler. One can utilise the method of images (Achenbach, 1973) for some rather
special problems to extract the full solutions; however typically the situations are often somewhat more
complicated.

The aim of this paper is to develop approaches that generate the stress intensity factors and give the
exact form of the wavefronts, up to a specified time, generated by the dynamic loading of a semi-infinite
subsurface crack. For ease of exposition we consider cracks that are parallel to the interface, the results may
be generalised to look at cracks arbitrarily orientated to the interface; these results are not presented here. A
variety of different stress loadings may be considered and here we consider the crack to be subjected to a
prescribed stress loading on the crack faces and if required this could be chosen to be that induced by an
incident pulse and hence identical to a scattering problem. Unfortunately it turns out that the plane strain
problem cannot currently be solved conveniently and with this in mind we introduce an iterative (or
generalised Wiener—Hopf) method in which successively the Cagniard—-de Hoop (Flinn and Dix, 1962; de
Hoop, 1960) and Wiener—Hopf (Noble, 1958) techniques are applied to solve a matrix Wiener—Hopf
equation. This follows the scheme presented by Haak and Kooij (1996) and Kooij and Quak (1988) for
anti-plane problems. The application of the Cagniard—de Hoop technique follows Garvin (1956) and Harris
(1980). The iterative scheme is illustrated in detail on an anti-plane crack problem and, in addition, we
demonstrate how weight functions can be incorporated into the iterative scheme.

The analysis is performed using Fourier and Laplace transforms in space and time respectively. The
Laplace transform in time, ¢, and its inverse, are defined as

7= [ e 0 =5 [ 7w torRe >0, (1)

c—ioo

where the Laplace transform variable is p. The Fourier transform in one spatial direction, x, and its inverse,
are defined as

76 = [ rwera =g [ Feees (1.2

where s is the Fourier transform variable. We also utilise the Cagniard—de Hoop technique.

One of the most useful results found during any study of crack behaviour is the stress intensity factor; it
is the stress intensity factor that characterises the near crack tip stress field. Here the results for the stress
intensity factors are checked, and in some cases extended, using an invariant integral based on a pseudo
energy momentum tensor (Atkinson, 1977; Atkinson and Craster, 1995a); which is a generalisation of the
Eshelby (1951, 1970) energy momentum tensor. In particular, for a class of crack loadings, it enables us to
investigate the effects of material inhomogeneity without any need for Wiener—-Hopf analysis. This is
motivated by the current interest in non-homogeneous or layered media.

For simplicity, we treat a simple spatial form of stress loading on the crack faces. We then demonstrate
how weight functions (Bueckner, 1970) can be deduced within this iterative procedure and this allows us to
generalise the stress intensity factor results to deal with any stress loading.

The plan for the following five sections of this article is as follows: first, in Section 2, we consider the anti-
plane problem of a semi-infinite crack in a layered elastic material. The exact solution is found as an inverse
integral using the Wiener—Hopf technique. This integral could then be evaluated numerically; these results
are not included. Instead, we employ an iterative generalised Wiener—-Hopf method (Thau and Lu, 1971)
that yields a series solution. The motivation for developing this approach is that the exact solution contains
a triple integral to evaluate and this obscures the physical interpretation of the solution. Also, the analo-
gous problem of a subsurface crack in an elastic solid cannot currently be solved conveniently as one
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obtains a matrix Wiener-Hopf equation whose factorisation is awkward; we briefly consider this case in
Section 5 for the special case of a spatially uniform crack loading. An invariant integral is introduced in
Section 3 which is then used to explore some model non-homogeneous materials, the aim is to illustrate the
method as a useful analytical tool. Following this, in Section 4, we develop an iterative weight function
method thus enabling us to use the generalised ray method to find formulae for the stress intensity factors
exact up to a specified time.

The in-plane crack problems are substantially more complicated, involving mode coupling at both the
crack tip and the interfaces. We briefly illustrate how the techniques developed in the simpler anti-plane
case carry across to this harder situation in Section 5. Finally, a summary of the results is given in Section 6.

2. Anti-plane loading

We consider an elastic layer in 0 < y < b, bonded to a semi-infinite elastic material that occupies the half
space b < y < oo; along the interface, y = b, the stress and displacement fields of the two materials satisfy
continuity conditions. Within the elastic layer, a semi-infinite crack is present along y = a (a < b) for x > 0;
this is shown in Fig. 1. This figure also shows the first reflected waves for ¢ < r + 2a/c, where
12 =x>+ (y —a)’; b — a > 2a. This is after the wave from the crack that has been reflected from the surface
strikes the crack, but before this wave returns to the surface, and before the wave reflected by the interface

strikes the crack.
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Fig. 1. The geometry of the problem shown together with a schematic of the first reflected waves.
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A Cartesian coordinate system is adopted with x;, x, corresponding to x and y. The problem is two-
dimensional and the relevant stress components, o,;(x, ,t), are related to the out-of-plane, that is, in the z
direction displacements u,(x, y,t) via

0z = HU j, (21)

where the comma denotes differentiation with respect to x; and u(x,y) is the elastic shear modulus. The
governing equations are the equilibrium equations o.;; = pii,, where the notation denotes partial double
differentiation with respect to time and p(x,y) is the material density. The displacement satisfies

202) (5

which reduces to the wave equation V?u, = ii./c*> when the material parameters u and p are constant; the
wavespeed ¢ is then defined as ¢ = u/p. To distinguish between the different materials in the layer and
underlying half space a superscript (%) is adopted to denote the elastic half space y > b. In this section, we
henceforth assume that the material is homogeneous so x and p are constant; we consider non-homoge-
neous materials in Section 3.

The surface y = 0 is taken to be rigid, hence, u. = 0 there; a very similar analysis can be performed if the
surface is stress-free. The crack lies in undamaged material so the condition taken ahead of the crack, y = a
for x < 0, is that the displacement u. is continuous there, and the stress o, is continuous along y = a,
—00 < x < co. The loading taken on the crack y = a, x > 0 is that o., = F(¢)H (x), where F(¢) is the time
dependence of the pulse and H (x) is the Heaviside function. Later, in Section 4, we utilise our solution in
conjunction with weight functions to extend our final results to any spatial loading. Along the interface,
y = b, both the displacement u. and stress 0., are continuous, i.e. u, =u{" and 0., = o'¥).

2.1. Exact solution

First we shall solve the problem exactly, and then using an iterative approach. To formulate a functional
equation, we apply Fourier transforms in the spatial x coordinate and Laplace transforms in time, together
with the following half-range Fourier transforms: the transform of the unknown stress o, ahead of the
crack y = a for x < 0, and the transform of the unknown jump in the displacement, u., across y = a for
x>0,

0 00
o en = [ mlapetdn Uep) = [ v p) - pleds (23)
The subscripts + and — denote functions analytic in the ‘plus’ and ‘minus’ regions of the complex & plane,
respectively; specifically in Im (&) > 0 and in Im (&) < min(p/c, p/c), respectively. In the following, we
loosely refer to these regions as the ‘upper’ and ‘lower’ halves of the complex & plane. The superscripts +
(—) for at (a) denote the limit as we approach the crack faces (y = a) from above (below).

The Wiener—Hopf technique generates a functional equation that connects the transforms of these
unknown quantities. This equation is then disentangled to identify the unknowns, and hence it determines
the full solution. Along the way we require, of course, to satisfy the edge conditions, that is in terms of polar
coordinates (r,0) based at the crack tip, the displacements are O(r'/?) and the stresses are O(r~'/2) at the
crack tip. The functional equation emerges as

HePlo-(Ep) + To(Epl] = (EPU-(Ep), where T, =20, 2.4)

the function 7", has been introduced for convenience. To incorporate the specific loading adopted here, i.e.,
the spatially constant stress loading we adopt the convention that the pole at zero is in the lower half of the
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complex ¢ plane; this is, it is a ‘plus’ function and we remind ourselves of this fact using the subscript +
upon ¢ and 7. In Eq. (2.4), F (p) 1s the Laplace transform of the time dependence of the stress loadmg, F(1),
and the function y(&,p) (7(&,p)™) is defined as y(&,p) = [ + p2/c2]"* (YW (&, p) = [ + p*/c™’]'%). The
branch cuts for these functions, in the complex ¢ plane, are taken such that they run along the imaginary
axis from +ip/c (£ip/c™) to Fioco.

A function 2(¢, p) is introduced in Eq. (2.4), and is defined as

wMy™ sinh(yb) + wy cosh(yb)

2(S,p) cosh(va) = GG R (b — @)l T sy sinh[y (b —a)]”

(2.5)

where 7 = (&, p) and y = 7y® (&, p). This function captures all the essential physics of the wave reflections
from the surface, crack faces and interface together with the waveguide nature of the geometry.

The next step in our Wiener—Hopf recipe involves separating the functional equation (2.4) into a piece
that is analytic in the + region, and a piece that is analytic in the — region. These pieces have a common
overlapping region in the ¢ plane, and thus are equal to the same analytic function within this strip. Hence,
by analytic continuation, both sides must equal a function that is analytic everywhere. This must remain
true even as |£| — oo, and so (by Liouville’s Theorem) this function is a polynomial in £. This allows us to
find the unknown transforms analytically. This polynomial is determined by applying the known edge
behaviour at the crack tip, i.e., the stresses are O(r~1/?) there.

In order to make the split into the standard Wiener—Hopf form the function 2(¢,p) is split into a
product of + functions: 2(¢,p) = 2,(&,p)2-(&, p); a related splitting is described in Appendix B, here, it is
ultimately most easily performed in terms of some quadratures. We also require the product split
P(E.p) =7, (&p)y_(E.p). where 1.(&,p) = [¢ £ip/c]’.

We now rearrange the functional Eq. (2.4) so that the left- and right-hand sides are analytic in the upper
and lower halves of the complex ¢ plane respectively:

WGPy 200 2,y 260 20T (2.6)

2.&p) " T0p) 1-(Ep) _(&p)  7-(0,p)

The regions of analyticity overlap on 0 < Im(¢) < min(p/c,p/c™); this is enough to invoke analytic
continuation and to determine that both sides of the functional equation can be extended to the full
complex ¢ plane, and hence are equal to the same analytic function everywhere. Using the edge conditions
(the stresses in the limit as » — 0 are O(r~'/2)), this function is determined to be zero.

One of the most immediate results that can be deduced from the functional equation is the behaviour of
the stress near the tip of the crack. The limit as || — oo in the transform space corresponds to the limit as
x — 0 in the physical domain. The stress ahead of the tip of the crack is o_(¢&, p) from which

c2(0,p)
2pm

2500~ F) (o)) (1 = Runlp)(2m) 1 forx <0 @7
To obtain this result, we have employed the inverse Fourier transform given in Appendix A and the result
2_(&,p) — 212 as |¢| — oo. The mode 111 Laplace transformed stress intensity factor Ky (p) = K(p) is also
defined by Eq. (2.7) and hence can be explicitly extracted; that result is also extracted using an invariant
integral in Section 3. The full solution for the stresses in the elastic layer is identified from Eq. (2.6) as

| e F(p)y_(&,p)2-(0, p) cosh(yy) o g o
21t1/10O 2 ) . iE.y (0,p)2_(&,p)cosh(ya) déedp (2.8)

for 0 < y < a. A similar expression may be deduced in a < y < b; these results are not included here. So far,
we have taken the stress loadings to be uniform along the crack faces, however, we may routinely generalise

GZy(x »p) =
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this to any loading of the form ¢., = F(#)G(x). For ease of presentation, we restrict ourselves to the stress
intensity factors. The stress ahead of the crack tip is now asymptotically

.. (x.a,p) ~—F # L WM ) PH (e

where G(y) is the Fourier transform of G(x) (with Fourier transform variable y). We also note that
2 (y,p) ~ 212 + O(e72?) to deduce the solution for a single crack in an infinite homogeneous material.
This general formula is useful in comparison with one obtained later using weight functions.

These formulae formally solve the canonical problem. A direct numerical evaluation of the integrals
above can be performed, but this is not overly revealing. In case when we expect the first few arrivals to
completely characterise the solution, it proves to be more straightforward to proceed iteratively. Hence
we choose to develop a method that iteratively solves Eq. (2.4) rather than formally expand the integral in
Eq. (2.8).

In this section we have made a direct product split 2 = 2, 2_. The essence of a generalised ray approach
is rather than digest 2 in its entirety, we swallow it as smaller more manageable portions, i.e.,

1 1 h)y® —
775 1 +exp[ — 2ya] + (%)exp[—2y(b—a)]+-~ (2.10)
and each term of 2 now contains all the physics up to a specific time; the terms involving u, y, u, and y
can be identified with reflection coefficients from the interface or surface, and thus each term has physical
significance. Each term of 2 is ultimately split into a product Q). of + and — functions; however, the
‘sum of products’ that we construct does not, as a whole, have an obvious factorisation into a product of +
and — functions so that 2, (or 2_) is not easily recovered from its smaller portions as we may, at first,
expect.

2.2. Iterative solution

In this section, we utilise an iterative scheme similar to that described by Kooij and Quak (1988) and
Haak and Kooij (1996) to solve the problem we formulated in the previous section. This places the physical
language of various superpositions, see for instance Tsai and Ma (1993), in a more rigorous setting. This
approach lends itself well to further generalisations.

To formulate the current problem the original functional Eq. (2.4) is split into a series of less complicated
subsidiary equations. Each equation then corresponds to the wavefield due to successive reflections from
the crack, the interface and the surface. In the following, we drop the tilde and overline decoration on wu,
and write ﬁz(f, »,p) as u, to shorten the notation; the same convention applies to g.,.

We expand u, in generalised wave constituents, that is, each constituent has the property that its
wavefront corresponds to the ray path that is described by a generalised ray of the same class (in the sense
of number of reflections);

uz:iiugm’") in0<y<a, (2.11)

m=0 n=0

with a similar expression for u, in y > b and for o.,. Similarly we expand the unknown quantities in the
transform domain o_ = o_(¢&,p) and U, = U, (&, p); the arguments ¢ and p are again omitted here and in
y(&, p). The superscripts (m, n) correspond to m reflections against the interface, y = b, and the crack, and n
reflections against the surface of the elastic layer, y = 0, and the crack. The functional Eq. (2.4) is rewritten
as
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1+ Re=2? o
2o-+14) (m) = —wy(l+e)Us, (2.12)

where Z is the reflection coefficient at the interface of two dissimilar half spaces:

— (m)ay(h)
%:NV ey

Wy 4oy (2.13)

The reflection coefficient at a rigid surface is, of course, —1; so there is no need to introduce any extra
notation for that reflection coefficient, although one can envisage having yet another elastic material in
y < 0 and then requiring a reflection coefficient for reflected waves from y = 0. Using the expansion in
Eq. (2.11), we split the functional equation (2.12) into a series of simple functional equations each of which
is order exp|[—2my(b — a) — 2nyal. Doing so, we arrive at the following explicit functional equations:

0,0
00 = U,

5O = —%,uy(UJ(rO‘") + Uio‘"fl)e’z}’“) forn>1,

m—1

S(_m,O) + Z%m*qefz(m*q)?(h*a)siqﬁo) _ —%/WUJ(:”’O) for m > 1,
q=0

m—1

stmm 4 Z%"HI (st 4 glan—leg2)e2m=a)ib=a) — —%W(Uﬁ"’") + Uﬁ"’”il)efz”“> for m,n > 1.
=0
(2.14)
In these formulae 5% = ¢®% + T, and otherwise s”") = ¢ To recover the stresses in 0 < y < a, we
require a further expansion that has the following form:
n
o) = | SO (= 1)fstmnng-a | ea(en 4 o), (2.15)

q=0

recall that o, = > ( > ol""). The stresses in a < y < b and b < y are not included here, but may be
found in a similar way. Note that each successive solution in Eq. (2.15) includes both forward and back-
ward going waves to +oo and —oo, respectively, i.e. both the waves diffracted by the crack and reflected by
the fixed surface at y = 0 and the interface at y = b are described by a single iteration. A more physical
approach that we could choose to exploit relies on a superposition of three separate problems. This ap-
proach is briefly described in Section 2.3.

2.2.1. First loading
The zero order functional equation from the first equation of Eq. (2.14) is

2(6°% +7.) = —U?. (2.16)

This is equivalent to the standard infinite medium problem (Freund, 1990) as the crack is initially unaware
of either the surface or interface, and the unknown transforms emerge as

2r 7-(&,p)
©00) _ + 00) _ [/ )
Uy = , oV =T 1],
! wy(&,p)7-(0,p) "Lr-(0,p)
from which we may deduce the zero order diffracted stress field explicitly. A more striking result that falls

out of the analysis is the behaviour at the tip of the crack; we can extract the leading behaviour (using
inverse Fourier results from Appendix A) as

(2.17)
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F) (%) (a2

where L denotes the Laplace transform operator. This result verifies, in part, the near stress field evaluated
in Eq. (2.7).

It is straightforward to find the zero order solution utilising the Cagniard—de Hoop method, a detailed
description of the method may be found in Miklowitz (1978) and others. In this case, it transpires that we
require two different inversion contours, chosen so that ¢7 = (2 +1)"*(a —y) +ilx and T = (3 +
1)1/ 2(a + ) + ilx, for time T real and positive. This is equivalent to constructing a generalised ray path; the
path describes the vertical distance travelled by each wave, the total horizontal distance, and the direction
of propagation. This device places the inverse Fourier integral in the form of a Laplace transform; in
further iterations, this is not enough and we are required to formulate further Cagniard paths. We now
require the inverse Laplace transform of this integral and as a result the solution in real time is found
immediately by inspection. The explicit solution, for a general time dependence, is

= [ om0 50

+ H(t - r/c)Re ( 1C/2(<f)2v(f()3) d%g"') )} dr. (2.19)

In this formula, 72, = x> + (v F a)>. We have also added some further decoration on the Cagniard paths:
el = p((12(T))(a Fy) +il1,(T)x, and a rescaling y({) = [* + 1]'2. This solution corresponds to the cy-
lindrical wavefields in x < 0 generated by the crack and subsequently reflected by the surface y = 0. It is
formally valid in the interval 0 < ¢ < (r; + 2a)/c. In addition, in x > 0 waves parallel to the crack faces are
generated and in this case are given, by a residue calculation, in the form F(t— (a—y)/c)+
F(t — (a+ y)/c). In further iterations, it is necessary to formulate the integral in terms of ‘plus’ and ‘minus’
functions in x < 0 and x > 0 respectively as a result of shifting the integration path in the upper and lower
halves of the complex ¢ plane. In Eq. (2.19), this distinction is not necessary. This result is plotted in Fig. 2
for the case F(t) = d(¢).

0.0) 7l
o, (x,a,t) ~ L

: (2.18)

2.2.2. Reloading by the surface
To proceed we utilise the zero order solution we have determined in Section 2.2.1 to reload the crack and
find the waves diffracted by the crack in this case. The Wiener—Hopf equation of exponential order
exp[—2ya] is given by Eq. (2.14) as
T ) 22
In order to utilise the Wiener—Hopf equation, we define Q") = e~2 and this function is split into the sum
of + functions, i.e. 00V = 0"V + 0OV where
1 (0.1) 1 =2y(n1.p)a

(0,1)
, =+ = — R
Qi (é p) 1 2mi c. n — é

. dny, 2.21
2ni Jo, m —¢& " (2.21)

and QS? ‘U(é, p) = 0D (¢ p); C, (C.) is the contour from —oo to oo indented below (above) the real axis.
After some Wiener—Hopf analysis, we arrive at the following expressions for the unknown transforms:

21, [0, p) + 001 (0, p)|
1w (& p)y-(0,p) '

o0 = DT (pone p) g, p)], U =

v 2 (0.) (2.22)
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Fig. 2. The stress field for the case F(¢) = 3(¢) valid in ¢ < r; 4+ 4a/c for x/a = —0.02 and y/a = 0.6; also shown by the (---) is the
equivalent result in an infinite body.

2.2.2.1. Near crack tip stress field for O(e~?'*). We can again obtain the near tip behaviour either via taking
the limit |¢| — oo, that corresponds to x — 0, in the inverse Fourier integral and evaluating the remaining
integral in #;, or equivalently utilising expression (2.22) directly. In the limit as |&| — oo then
Q&O"l)(é, p) — 0, and the near crack tip behaviour may now be extracted by evaluating Q! (0, p) only. This
is obtained by collapsing the integral around the branch cut that runs from ip/c to ico in the upper half
plane and then evaluating the resulting definite integral using 3.7166 of Gradshteyn and Ryzhik (1980).
That is

/2
0 (0p) = [ sin(zpatany/c) anyay = 3¢ e =3 000, (223)

so that we obtain

%V (x,a,t) ~ =L

¢ 1/2 "
F(p)(2> %e-zap/ﬂ(fzm)*/ . (2.24)

P

The results for the stress intensity factor presented here using an iterative approach are again consistent
with those obtained by expanding Eq. (2.7). We provide a further check on this analysis using an invariant
integral in Section 3.

2.2.2.2. Near crack tip stress field for O(e~*"*). Before we proceed to compute the stress field in this case, we
briefly focus our attention on determining a further stress intensity factor. It is observed that the evaluation
of further wavefields needs only the solution of a finite set of Wiener—Hopf equations. To evaluate this next
reflection, we require
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0°2(&,p) = 0V (& p) [0 (€, p) + 0°(0,p)] = 007 (&, p) + 0¥ (&, p), (2.25)
where
1 2y(nz-p)a
0°(Ep) = ~5z | Sz [0V 0ep) + 0" (0.p) (2.26)

and Q+ (f p) is similarly defined. As before the near crack tip behaviour may now be extracted by
evaluating 02 (0,p) = Ip + [Qi (0, p)] This is obtained by collapsing the integral /, around the branch
cut that runs from ip/c to ico in the upper half plane, and in this case evaluating the resulting double
definite integral:

1/2 N\ 1/2
s1n{ —”—2) } sin {2(}52—%) a} 1
=— / / dydy = ger“fw/f. (2.27)

Y(x+ )

Using this result, we have found Q<+0’2) and hence the near crack tip behaviour:

1 E() <2c> 1/2 ge*““p/c( B 2nx)1/2] . (2.28)

The stress intensity factors are discussed in detail in Section 3.
Following our short aside, the stress field may be written as

1 00 e=2i(mpa o v
o002 y.p) = —F(p) E ;[m | e g)dm}(e/@ ) g, (2.29)

where we have written 0" (&, p) and Q®(0, p) explicitly. In the present case, we wish to invert a trans-
formed field quantity that already contains an integration over the variable 7,. Following Harris (1980), we
introduce Cagniard contours in both the { plane, as described above, and the 5, plane,

cty =213 + 1) a. (2.30)
We shift the { and #, integrations onto contours along which 7 and ¢, are real. The 5, path is defined by

0(0 D (x,a,t) ~

1\ 2 12 2a
£y :ﬁ:(c—1> 1| for <y 231
i) = £ (5 or 22 <1, 231)
and the {;,(T) path employed in the first iteration is here expressed explicitly as
T T P} 1/2
Ga(T) = i sin 0,5 + <c> - 11 cosfy, for 12 < T; (2.32)
ri2 r12 c

we have taken the branch of the path with positive square root.

The modified Cagniard method (Harris, 1980) relies on a change of order of integration and the result
t = t; + T to rewrite the integral in the usual Cagniard form. Then the time transform is of such a form that
the inverse transform can be identified for any general loading, F(¢), in 0 < y < a as

©—2a/c

H(x — (r + 2a) /<) / GOV (T) 0y (x — T))dT

r/c

t
1
Wyt = [ Fl-05s

t—2a/c

+H(t— (r —|—2a)/c)/

n/e

GO (), m (7~ T))dT] dr, (2.33)
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where the function %V is defined by

ol v (9 R
oT (0 )(im*(m*C) o i (m —0) on )} (2.34)

In Fig. 2, the wavefield valid in time 0 < 7 < ry +4a/c, i.e. 6, = ag),"o) + og’” + O(e™® e=2(=a)) until
the second wave reflected by the surface returns to the crack, is shown in x < 0 and 0 < y < a for the
loading F(z) = 8(¢). In addition in x > 0 waves parallel to the crack faces are generated and proceed to be
reflected by the surface in a similar way. There is a one-sided singularity associated with each cylindrical
wavefront, and these can be seen in Fig. 2; further reflections give rise to other singularities.

As x/a is increased the sharp peak that occurs close to the wave arrival is smoothed out. When y/a < 1
and the observer is near to the fixed surface then the amplitude of the reflected wave is increased and arrives
near to the wave incident on the surface. Similarly, when y/a ~ 1 and the observer is now near the crack
then the diffracted wave and the wave incident on the crack arrive close together. These observations may
be predicted by physical considerations.

So far the formulation and analysis has been for a crack in a semi-infinite half space 0 < y < oo; i.e. the
crack is unaware that it is in a layer above a half space. In 0 < y < a, the effect of the interface between
the elastic layer and half space is first seen after time ¢ > r1 + 2(b — a)/c, i.e. after the first wave reflected by
the interface returns to the crack. The previous analysis and Fig. 2 have assumed that 5 — a > 2a. This
problem is considered briefly in Section 2.2.3.

SO (U(T), my (1)) = —Im[

2.2.3. Reloading by the interface
In this case, the Wiener—Hopf equation of exponential order exp[—2y (b — a)] is given by Eq. (2.14) as

_2[ (1,0) _|_J?( (0,0) +T) )(b*a)] :,quJ(rl’o). (2.35)

Following the approach used in Section 2.2.2, we define Q") (¢, p) = e~#=9 split this into + functions,
019 = o 4 0019 and extract the expressions for the unknown transforms:

T+w7 V, R
o0 = - LS BR 190016 p) - 01010, p)],

2T+9?[Q$‘O)(é, p)+ QQ-O)(O,p)}
1y, (&, p)y-(0,p)

(2.36)
yto — _

2.2.3.1. Near crack tip stress field for O(e=>"®=9)). In the same way that we evaluated the near crack tip
behaviour in Section 2.2.2 in this case it may be extracted by evaluating "% (0, p). Again using integral
3.7166 in Gradshteyn and Ryzhik (1980) (or evenness of function QU (&, p)), we find that

124

1?@)(#) EAezp(”“)/"(—x)l/Z], (2.37)

(10) o~ L
o, (x,a,t) L

where 4 = (uc" — u™c)/(uMe + pc™) and this result is consistent with the solution in Eq. (2.7).
Out of completeness, the stress field in this case is

o)y, p) = —%@%[QM)(@ p) — 0190, p)] (70 — ¢ (2.38)

this expression may be routinely inverted using the Cagniard—de Hoop method described in Section 2.2.2.
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2.3. Comment on fundamental solutions

An alternative approach of generating an iterative solution is to treat as separate problems the loading of
the crack, the surface of the elastic layer, and the interface between the elastic layer and the underlying half
space; each of these successive iterations takes the negative of the previous solution as its loading. This can
be shown to be completely consistent with the analysis presented in the earlier sections and it has been used
as a consistency check; the details are not included. Physically, this approach has some advantages over the
iterative scheme used in Section 2.2 and in Haak and Kooij (1996); in a more complicated coupled situ-
ation, such as the in-plane scattering problem of Section 5, where identifying the wavefields is less ele-
mentary, it is sometimes more convenient to adopt this separation approach and extract each scattered field
independently.

3. Invariant integral

In this section, attention is given to the field near the crack tip, which is completely characterised by the
stress intensity factor, and in particular we focus upon non-homogeneous materials. The results for the near
crack tip stresses for a homogeneous material have been presented in Sections 2.1 and 2.2; these results are
also recovered using a path-independent integral. The basic method was first used in dynamic elasticity by
Nilsson (1973). Following the approach initiated in elastostatics by Eshelby (1970), a Lagrangian is de-
duced in the Laplace transform domain in each material such that the Euler—Lagrange relations recover the
governing equations; the Lagrangian L, is

L = (0t + pp’iic). (3.1)

As this is defined in the transform domain this Lagrangian does not have the apparently obvious physical
interpretation, i.e., one would hope it was the transform of the physical energy density. Unfortunately, the
Lagrangian and pseudo energy momentum tensor involve products of Laplace transforms. The inverse
transform of a product of transforms is not the product of the inverse transforms; which would lead to the
obvious interpretation. But the inverse transform of a product is a convolution, hence, it is not clear what
the physical meaning is. When we consider the layer-half space configuration of Section 2 this Lagrangian is
defined in 0 < y < b and we also need to define a Lagrangian L") in b < y by Eq. (3.1) with appropriate
changes to material parameters. Initially, we treat a non-homogeneous half space and only need the first of
these Lagrangians. The corresponding pseudo energy momentum tensor is

oL _

P[j = @uz,l — L61]'; (32)
again, unlike Eshelby’s elastostatic energy momentum tensor the pseudo energy momentum tensor in the
Laplace transform domain does not have any obvious physical interpretation. The Lagrangian does not
depend explicitly on the space variable, and thus the integral, £}, defined as

N

is zero provided that the path S does not enclose any singularities; #; is the unit vector normal to S (Fig. 3).
This integral is analogous to Rice’s J integral (Rice, 1968) but is now also incorporating dynamic effects and
the non-homogeneous material variation.

For anti-plane strain, the stress intensity factor can be rapidly evaluated using this invariant integral.
Although it is important to realise that the technique only works neatly as a computational tool for spa-
tially constant applied stress or displacement boundary conditions along the horizontal (x) boundaries and
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Fig. 3. The path, S, required for the application of the invariant integral in Section 3.

for material variation in the y coordinate. In the more complicated situations found for in-plane elastic
problems mode coupling occurs at the crack tip and the method often leads to a representation for the sum
of the squares of the stress intensity factors (Section 5). In static elasticity theory, this all reduces to the
energy release rate, however we are currently in the Laplace transform domain, and it is unclear what
physical significance, if any, these results have apart from neatly capturing the transformed stress intensity
factors.

In essence, the information near to the crack tip can be obtained by studying the far away field; we
evaluate the integrals far from the crack tip and relate this to the stress intensity factors. The behaviour near
the tip of the crack is determined in terms of cylindrical polar coordinates (r,6) centred on the tip with
0 =0 ahead of the crack and the elastic material is in —n<60<m; the stress is locally 7., ~ K(p)/
(21131’)71/ ?cos(0/2). The coefficient K(p), the stress intensity factor (in Laplace transform space), cha-
racterises the near tip singularity and here we shall extract it using the invariant integral. These near tip
fields are used to evaluate the integral around GH (in path S).

To evaluate the stresses, we note that the derivatives with respect to x tend to zero as x — +o00. As a
result, the governing equations become

do. _ _ du;
dyy = p’p(»)u., where G, = u(y) 4 (3.4)

When treating spatial variations in the shear modulus or density the application of the Wiener—Hopf
method or numerical methods, to a semi-infinite crack problem, may be difficult. Currently much of the
non-homogeneous fracture mechanics literature concentrates upon static situations, e.g. Ergiiven and
Gross (1999). However, the path independent integral is ideally suited to dealing with special situations
(spatially constant loadings and material variation normal to the crack), and in fact the method gives
results for any variation of modulus. Some related static problems are considered for general p(y) in
Atkinson and Craster (1995b).

For analytic simplicity, as in Atkinson (1975), we make the further restriction that the density p varies in
such a way that p(y)/u(y) = c¢? a constant. Introducing the substitution v(y) = u'/?>(y)u.(y) then enables
the governing Eq. (3.4) to be rewritten as
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d*v P 1| d®u 1 /dp\’

We now make some specific choices for the material variation. The first choice, u(y) = «* exp(2fy), where f3,
o are constant, has the advantage that the resulting function a(y) is equal to 2. This results in the simple
solutions v(y) = 4 exp(—TI'y) + B exp (I'y), where I' = [(p/c)” + "%, for constants 4, B determined by the
boundary conditions on y =0 and y = a.

We now proceed to relate the integral around the crack tip to the known integrals around the body; the
only integrals that contribute to the invariant are along EF, AB, (and B'A’ in an elastic layer), and the points
at F and A along the crack faces. Performing the integrals we obtain

. 12
I'(sinh I'a 4 cosh I'a) p

(' + p)(I'cosh I'a — fsinh I'a) * 2(I" cosh I'a — fsinh I'a)® (3.6)

K(p) = F(p)

It is perhaps surprising that the stress intensity factor is independent of the choice of o for this specific
loading. A related choice of u(y) in an infinite body is o®exp (2f]y — a|), which is a symmetric modulus
variation about the fracture plane, in this case the Laplace transform of the stress intensity factor for an
infinite body is

R(p) = F@)(r%ﬁ)m. (3.7)

The stress intensity factors rescaled as K (¢)(rt/8a)"/* versus non-dimensional time c#/a are shown in Fig.
4; the Laplace transform (3.6) is inverted using an adaptation of the Fourier inversion routine described in
Atkinson and Craster (1992a). The figure compares moduli variations; the second variation is described
later. In panel (a) the modulus variations u(y) = o«® exp(28y) (—) and u(y) = (By + @)° (---) are shown for
p =0.5/a, a = 1; the corresponding results for a crack in an infinite material are shown by (— — —) and (- - -),
respectively. For further comparison the dashed-dotted line (- -) shows the results for constant u. The
rather striking changes in the stress intensity factor in Fig. 4(a) are caused by the waves reflected from the
surface reloading the crack; the reflections occur at equal values of ct/a since we have taken ¢ to be
constant. In panel (b), the effect of a modulus variation, symmetric about the fracture plane, on the in-
tensity factor is shown for a crack in an infinite material with § = 0.4/a, « = 1 and modulus variations
u(y) = e exp(2Bly —a|) (—) and u(y) = (Bly — a| +«)” (---), and otherwise as in panel (a).
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Fig. 4. Rescaled stress intensity factors for different moduli variations, see text for details.
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Increasing the value of f in these results leads to larger peaks in the stress intensity factor as the material
has decreasing rigidity in the layer between the crack and the surface; the net effect of which is to con-
centrate the wave energy near the surface and leads to a stronger reloading effect for waves reflected from
the surface. The sharp reloadings become less evident, and this can already be partly seen in Fig. 4(a).

In contrast to Fig. 4(b), the symmetric modulus variation is crudely speaking analogous to a rigid
boundary above and below the crack, we no longer obtain the sharp peaks due to the distinct reloadings
caused by the reflections from a rigid boundary, but rather we get a continual and gradual reloading which
causes the stress intensity factor to level off to a constant value f~'/%.

To contrast with the earlier choice of an exponential variation we now choose a variation with algebraic
growth, u(y) = (fy + ac)z, which is also analytically rewarding. The stress intensity factor is shown in Fig. 4;
the details of the figure have been given and are not repeated. This modulus variation leads to a(y) = 0 so
that the solutions take the form v(y) = 4 sinh(py/c) + Bcosh(py/c). In general for u(y) = (fy + )" then
a(y) = n(n —2)*/4(By + «)* and, therefore, in general we have to proceed numerically; this is not the case
for n = 2. Evaluating the integrals and relating the non-zero contribution to the integral around the crack
tip gives

1/2
X00) :f(p)<p>l/2 : smh(pa/c)—kcosh(p;z/c). . (3.8)
¢ (é.y(ﬂaﬂ))(’f cosh (pa/c) —Wsmh(pa/c))

A related result in an infinite material for a symmetric variation about the crack u(y) = (Bly — a| + a)” is
K(p) =F(p)[2/(p/c+ B/=)]'*. Under Heaviside loading F(r) = H(¢) this can be inverted to give an error
function K (¢) = (20/B)"?erf\/Bet/a. A comparison between this result and the result in an infinite body is
made in Fig. 4(b), the symmetric modulus variation which have increasing shear moduli as one moves away
from the crack, have lower stress intensity factors as waves return to reload the crack from the regions with
higher rigidity. In contrast to the symmetric exponential loading, the stress intensity factor approaches a
constant value, (20/ /3)1/ *, monotonically from below.

These solutions provide useful benchmark examples upon which numerical solutions can be tested. In
addition they demonstrate the effect of inhomogeneity can be to substantially amplify the stress intensity
factors after successive reflections reload the crack. Note that when =0, in both the cases, we have
considered in detail then the shear modulus is constant, u = o, and we just recover the stress intensity
factor for a cracked half space. For small § (or y) then for both cases, provided o =1, we find
u(y) ~ 14 2By and we are in a position to compare algebraic and exponential variations and as we might
expect the exponential growth leads to a stronger response with more noticeable peaks.

We now return to the layer-half space configuration of Sections 2.1 and 2.2, we can generalise the stress
intensity factor results we have already obtained by using the invariant integral with a Lagrangian in the
half-space and layer: For convenience, assume that both the layer and half space are homogeneous, then
applying the invariant around the contour shown in Fig. 3 and evaluating the integrals along the sides of
the strip, one deduces that

B B c 172 u"esinh(pb/c) 4+ puc™ cosh(pb/c) "
R =T0) om0 ) - s ~a7e))

Some representative numerical results are shown in Fig. 5(a) where we have chosen some typical values for
the two free parameters b/a and uc® /u®c.

As an aside, the treatment of a layered-inhomogeneous material may, in certain considerations, be
approximated by the suitably adjusted treatment of an n-layered material. The full solution of the n-layered
problem is an arduous algebraic task since we are required to solve continuity conditions at each inter-
face, however, the invariant integral yields the stress intensity factors very rapidly by utilising simplified

(3.9)



700 R.V. Craster, D.P. Williams | International Journal of Solids and Structures 38 (2001) 685-716
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Fig. 5. Rescaled stress intensity factors for one or two layers above a half space; see text for details.

continuity conditions and only the integrals over the layers as x — oo. The following result is for two layers
above a half space, but may be routinely extended to several layers. The elastic layer in 0 < y < b, (=b)
is now labelled by a subscript 1, and the second elastic layer in b; < y < b, is denoted by 2; the half space is
in b, <y< oo,

K0 =0 s ) [ iceisaboife) + e cosbipie) ] 1
pcosh(pa/ci) weri; cosh(p(by —a)/cy) + weary sinh(p(by —a)/cy) | '
where b = b, — by,
. b (*#) b b ) b
K1 = Bginn (22 ) + £ cosh [ 22 , KQZ&COSh P2) B sinn [ 22, (3.11)
c c ch c) c c ch c)
In this case, we have five free parameters, b;/a and u,c™/uPc,, as before, and also b,/a, c¢i/c;, and

chz/ e

The Laplace transforms (3.9) and (3.10) are again inverted numerically for the case F(¢) = H(t), and the
stress intensity factors rescaled as K (¢)(rt/8a)"/* versus non-dimensional time cz/a are shown in Fig. 5. The
rather striking changes in the stress intensity factor are, again, caused by the waves reflected from
the surface, and this time also interface(s), reloading the crack. In Fig. 5(a) the solid and dashed lines show
the stress intensity factor for positive and negative values of 4 (when b — a > a), respectively; either the
waves in the layer travel faster than those in the half space (—) (the specific parameter values are that
b/a=5/2, u=u",and ¢ = 2¢") or the wavespeed in the layer is slower than that of the half space (— — —)
(u = u" and 2¢ = ¢™). (The dotted line shows the result for A4 = 0 that corresponds to a crack in an infinite
homogeneous body; the case p = p) and ¢ = ¢).) This illustrates how, if we fix the material properties of
the layer, changes in the half space contribute to the near field. In each case the first reflection, that from the
surface y = 0 is identical, thereafter if the wavespeed of the half space is slower less energy is reflected
towards the crack and the stress intensity factor lies below the dotted (identical materials) line and vice-
versa if the half space is faster then it lies above. It is worth noting, that changing the boundary conditions
on the crack and on the free surface, may significantly alter the properties of the stress intensity factor.

Finally, in Fig. 5(b), waves are reflected from the surface (y = 0) and the interfaces, y = by, y = b, at
intervals ¢it/a =2, ¢;t/a =2(b;/a— 1), and ¢ t/a = 2(by/a — by /a)c1/ca + 2(b1/a — 1), respectively, and
combine to generate reflections at all intervals of ¢;¢/a. In the figure, b,/a and ¢ /¢, are chosen so that the
lower layer first contributes at ¢,#/a = 5 and, for ease of presentation, so that the reflections occur at integer
values of cit/a. (b)/a=15/2, byJa=4, c¢;/c; =2/3, and ;" /u" e, =1/2; either pca/upe; =4 (—) or
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wea/puper = 1/4 (— — —) and the (- - -) shows the result when materials 1 and 2 are identical.) In this figure,
we compare the ratios of the moduli in the layers for a fixed ratio of their wavespeeds and demonstrate how
similar energy distributions take place.

The semi-infinite result (in an infinite body) is given by the (- —) in both panels of Fig. 5.

To explicitly identify the reflections that contribute to the near field expression (3.9) gives

K@>—F<p>(§)l/2 o, (2i)ldle e & (1) Q) A L (—1 (2k)le e
S 2@ & @-0Rg) & )

. . (312

which corresponds to the value of K? that is deduced from Eq. (2.7). Note that the sign of K cannot be
determined without additional information; nonetheless this provides a useful independent check upon one
part of the analysis.

We can expand expression (3.12) in orders of the exponential, and this enables us to perform each
Laplace inversion term by term to reconstruct the solution in real time explicitly as an infinite series; in
particular when F(¢) = H(¢) and 4 = 0, we obtain

2¢\ "2 & (= 1)¥(2k)!(t — 2ka/c) P H (1 — 2k
T p=r 2% (k1)
This is consistent with the solution found numerically. In addition writing the first terms in the series,
2 172 1/2 1 1/2 3 1/2
K =2 - (ct) H(ct)—i(ct—Za) H(ct—Za)+§(ct—4a) H(ct—4a)+--- |, (3.14)

we can identify these with the coefficients of the singular fields found iteratively in Egs. (2.18), (2.24), and
(2.28) ie. K(t) = KO9(¢) + KOV (¢) + KO (¢) + --- In Fig. 5(a), the dotted line for K(¢) in the interval
0 < ct < 6a is given by the first three terms in Eq. (3.14).

4. Weight functions

We have the explicit solution for our model problem of Section 2.1 when the stress loading on the crack
is of a simple form; the purpose of this section is to identify the stress intensity factor for any loading using
weight functions either for the exact solution, or for the iterative method. Other authors (Thau and Lu,
1971) have utilised iterative methods for related problems; the weight function method carries across to
those problems too.

The reciprocal theorem, assuming no body forces are present, is

/S(ai*ju,- —oyu)n;dS =0 4.1

with n; the outward pointing normal to the closed surface S. The starred and unstarred fields are inde-
pendent solutions of the governing equations in the chosen geometry; the starred field is a specially chosen
field typically more singular at the crack tip than the physically relevant solution and satisfying zero
boundary conditions, that is, it is an eigensolution. Each term in Eq. (4.1) is taken to be in the Laplace
transform domain.

For the eigensolution, we consider stresses that are unphysically singular, O(»=*/2), at the crack tip so

P

that in Fourier transform space a* ~ O(&?) as |¢] — oo:

: 22
ot~ U~ 71525;1/21@. (4.2)
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In our exact formulation of Section 2.1, the functional equation for the eigensolutions is

2 20t % =2i'’K"; (4.3)
2. Y-
% is an arbitrary constant which is determined by Liouville’s theorem. The value of € is found by com-
parison with the known asymptotic form of the near crack tip stresses in Eq. (4.2). Using the reciprocal
theorem along a contour applied around the crack tip; the contour then goes along the crack faces and is
closed in a large circular arc at infinity,

KoKp) =n | aulsappitnap)dr (44)
As u; emerges from Eq. (4.3), we have a formula for K (p):
o) 0 g —iéx
R(p) =~ i / 6.(x, . p) / 2:¢ 7 e dr. (4.5)
27'C 0 —00 V+

The application of this formula to the full solution involving product splits of 2 is not a trivial calcu-
lation. None the less one can do so and recover the general formula found earlier Eq. (2.9).

We can again proceed in an iterative manner and as a first step this reduces to
O_*(O,O)

[l #(0,0) = Al 2,
m/+U+ __2]/2 v _(g_ZIJF/Kv (46)

the formula for the stress intensity factor in this case is given by

&9 () :%(ﬁ)yz/ ozy(x,a,P)/
T 0 -

The particular (Heaviside) loading chosen in the earlier analysis may be recovered using the Fourier
transform results given in Appendix A; namely K 00— F(p)(2¢c/p)""*. The point of the weight function is
that having obtained the solution once for a specific loading, we can utilise the same method to generate
eigensolutions; the primary effort in any solution is the factorisation of the ‘kernel’ function 2. We now
choose a loading that is no longer ‘uniform’ along the crack faces, for instance an exponential loading like
0., = F(t) exp (—/x), that decays with distance along the crack for positive 4, in which case

00 L—iéx
eic

dédx. (4.7)

oo T+

00) > 1/2
7O _F 4.8
0 =Fo)(52) 48)
and when F () = H() we can find K©9(¢) = (2/2)"?erf\/7ct. The uniform loading treated in the previous
sections is a special case of this for 4 = 0 and we can recover the earlier stress intensity factors.

So far the results have effectively been for a crack in an infinite body; that is the crack is unaware of
either the surface or the interface. Next the solutions we have just derived are used to drive the ‘reloading’
of the unphysically singular crack,

a* 0D

Ui(o’l) + 2i1/2Q<+0’1)K* — ol _ 2i£/2Q<j)’1>K* -0 (4.9)
s

+

A
using 0" ~ O(1/&) — 0 as |¢| — oo. At first sight, it is unclear that the stress or displacement field has the
correct too singular behaviour. However if, for instance, we consider the stresses, ¢* = ¢*(*0 4 g*O1) ..
then this expression is still O(¢'/?) and thus after inversion to the physical domain is still too singular. The
stress intensity factor taking into account the first reflection can be found again from applying the recip-
rocal theorem, and is
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K" (p) = —%(21)‘/2/ 0., (x,a,p / o dfdx (4.10)

this formula reduces to Eq. (2.24) under a Heaviside loading, making a change of order of integration and
then capturing the residue at ¢ = 0 by closing in the upper half plane.

For further illustration, we again take an exponential loading, exp(—Ax) along the crack faces in which
case

o _ 2 \"1 .,
K" =-F —e e 4.11
0 =F0(2) 5 @.11)
and whose inversion for F() = H(t) is KOV (1) = —1/2(2/4)"*erf/I(ct — 2a)H (ct — 2a). In Fig. 6 a
comparison is made between a uniform and an illustrative non-uniform (exponential) loading for the stress
intensity factor. As /1 increases the loading decays more rapidly with distance from the crack tip, and the
resultant effects on the crack tip stresses are reduced; this is reflected in the reduced stress intensity factor
values.

The next solution is given in terms of "2 = 9"V @) = Q02 — PO (0)®) where Q2 is given in
Eq. (2.25),
—02) 1 ) 00 ] +(0. e—iéx
K%)=~ 50 [ ostvap) [ 01" “acan 4.12)
0 -0 Y+

for a uniform loading a single residue calculation again recovers our earlier solution. The stress intensity
factor for an exponential loading after inversion (F(f) = H(t)), shown in Fig. 6, is K*?(f) =3/8 x
(2/2)Perf\/i(ct — 4a)H (ct — 4a). The combination of formulae K0 (¢) + KOV (r) + KO (¢) + - - - gives
a representation for the stress intensity factors which is exact within the time window for which the last

0 I L I L I

0 1 2 3 4 5 6

ct/a

Fig. 6. The stress intensity factors for an exponential loading (—) exp(—4x) (4 = 0.5/a) and for a uniform loading (- -); also shown are
the solutions for a crack in an infinite body.
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of these is valid. The weight function for waves reflected from the interface between the layer and half space
also follows in a similar fashion.

5. In-plane loading

Despite the anti-plane problem of the previous sections being of some independent interest, we are
usually more interested in the analogous in-plane problems which we outline in this section. Here there is
little success to be had from tackling the problem head-on, unless one wishes to proceed numerically,
because of the matrix Wiener—Hopf equation that emerges, however the iterative approach, that we have
been advocating so far, is still applicable. There the application of the Cagniard—de Hoop method again
avoids any potentially difficult or awkward evaluation of a Fourier and Laplace inverse integral that
typically contains a Wiener—Hopf split function. Although the continual reloading of the crack becomes
progressively harder to describe.

5.1. Formulation

The problem is already complicated enough without an elastic layer so we only treat a single homo-
geneous medium with an overlying fluid: In the region y > 0 is an isotropic linear elastic material and in
y <0 is a compressible fluid. The responses of the two half spaces are coupled together through the
continuity boundary conditions along the interface y = 0, these are discussed following Eq. (5.2). A Car-
tesian coordinate system is again adopted with x;, x, corresponding to x, y.

The elastic material has (constant) Lamé constants 4, u, and density p. The stresses ¢;; in the material are
related to the displacements u; via

0ij = /16](1(5,‘]' —+ 2,[16,']', Where €jj = %(u,gj + l/ljﬁi), (51)

the comma denoting differentiation with respect to x;. The governing equations are the equilibrium
equations ¢;;; = pii;, where the notation ‘denotes double partial differentiation with respect to time. In this
case the analysis is most easily performed by utilising the displacement potentials ¢ and i where the
displacement uis u = V¢ + V x Z, where Z is the unit vector in the z direction. The wave speeds ¢4, ¢, are
defined in terms of the material parameters as ¢3 = 1+ 2u/p, ¢> = p/p. The subscripts d and s denote the
variables associated with the dilatational and shear waves respectively.

The compressible fluid in y < 0 is effectively an elastic material that supports no shear stresses, thus
0i; = Arew0y;, where the fluid has density p, and compressional modulus ;. The governing equations are
0;;; = pii; again, and we introduce a third displacement potential y such that the displacement uis u = Vy.
The compressional wavespeed of the fluid is defined as ¢} = 4,/p;.

It is useful to define the following y functions that occur throughout the analysis: y,(¢,p) =
&+ pz/cg)l/ * for q=d, s, o, r where ¢, is the Rayleigh wavespeed. A coupling parameter € occurs
throughout the analysis and is defined as € = p,c,/pc,. The assumption that the compressional wavespeed
of the fluid is less than the shear wavespeed of the solid is taken so that ¢; > ¢, > ¢,.

The following boundary conditions are taken on y = a, ahead of, and on, the crack x > 0

[u.] = [u,] =0, x <0, oy =0, o, =F(t)H(x), x>0, (5.2)

and the stresses o,,, g,, are continuous across y = a: [6,, ] = [g,,] = 0. In addition, the continuity boundary
conditions

[[O'yy] =0, o, =0, [uy] =0 (5.3)
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are taken on the interface y = 0, where the braces | ] denote the jump in a quantity across the interface;
both the stresses ,, and the normal displacement u, are continuous across y = 0. The fluid supports no
shear stresses, thus g,, = 0 on y = 0. For convenience we have, again, taken a spatially uniform loading of
the crack faces.

5.2. Transform solution

Once again we apply Fourier and Laplace transforms, this time with the following half-range Fourier
transforms: the transform of the unknown stresses, o, and o,,, on y =a, x <0,

0 0
L@mmz/'@v%mﬁwa m@mmzj’@vwmw%m (5.4)

o0 o0

and the transform of the unknown jump in the displacements, u, and u,, across y = a, x > 0,

V+(f,a,p) = /oo [ﬁx(xv a+,p) - ﬁx(X, a_,p)]eiéxdx,
| (5.5)

Uap) = [ [mcatp) - mlnap))e dr
0
So far the problems treated have resulted in a single Wiener—Hopf equation like

P(0)Q(O +0(0) = 2.0, (5.6)

and in order to rearrange this equation into the standard Wiener—Hopf form we require only the product
factorisation of P({) = P.({)P_({). In the present case we obtain a coupled system of two Wiener—-Hopf
equations and to proceed we need a matrix factorisation. Unfortunately, the components of the matrix do
not fall into any of the classes amenable to exact factorisation, and we require some numerical, approxi-
mate, or asymptotic method to provide it.

The resulting Wiener—Hopf matrix is

(U+>:<a11 a21><a+T+>’ whereT+:EEp); (5.7)
vy apn  axn T_ i&,

much of the analysis is relegated to the appendices. The expressions for a;; are lengthy and are omitted here;
they are written in Appendix C, alternatively we can use the language of generalised ray theory to piece
together the matrix. It is our aim to split this equation into a series of elementary Wiener—Hopf equations
each of exponential order exp [—2my,a — 2ny.a]. This corresponds to m compressional and »n shear reflec-
tions against the crack and the fluid-solid interface. The properties of a;; in a Taylor expansion, required to
formulate a series of Wiener—Hopf equations are given in Appendix C.

An alternative to approaching the matrix problem head-on is to interpret each reloading separately
(Section 2.3). If we do so here, and use displacement potentials, then the potentials that are generated by the
first compressional wave that is reflected from the interface are

& = (B, + Ry, )e 10, Y = (R + RN, (5.8)
124 P P

by iteratively constructing those potentials that arise after each reflection one can construct the matrix. In
addition if one has, say, a crack obliquely aligned to an interface this method by-passes the necessity of
constructing a formal Wiener—-Hopf matrix equation. These potentials neatly encapsulate the reflection
coefficients (%,,, etc.) that one expects to emerge from a generalised wave expansion and the same func-
tional equations ultimately emerge; this is both algebraically and conceptually easier than dealing with a
matrix.
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The notation employed in Section 2 is again adopted; the arguments ¢ and p are dropped whenever
possible. The zero order Wiener—Hopf equation is equivalent to the symmetric problem for a semi-infinite
crack in an infinite elastic material, and the corresponding anti-symmetric equation yields 7% = 0:

2 2
WRUSY = =23, 5 (000 +7.), pRvOY = =29, 500 (5.9)
s

N

In these formulae R is the standard Rayleigh function, R(¢,p) = (&2 + "/f)z — 4&%,y,. In order to rearrange
the symmetric equation into the usual Wiener—Hopf form this function is split into the product of +
functions. To this end we introduce the function Z(&,p) = L. (&, p) ¥ (&, p) defined by Eq. (B.5); the
relevant details and expressions are given in Appendix B. Rearranging this functional equation so that the
left and right hand sides are analytic in the + and — regions (defined following (2.3)), Eq. (5.9) becomes

Va-(&,P) a0 7, [ Va-(E,P) 7a-(0,p)

2 (Ep)Z_(Ep) v (Ep)Z_(Ep) 12(0,p)Z-(0,p)

@\ (&P 2 (&p) 1 (0.p) .
<1 ) RE 0.2 (0 P (5.10)

_ 2
Analytic continuation may now be invoked to determine that both sides of the functional equation are
everywhere equal to the same analytic function, X (&, p). The known edge conditions (i.e. again, the stresses
are O(r~!/?) there) are now used to determine that this function is in fact zero. This now yields the following
expression for the unknown half-range transform, ¢(*%

00 _ 1, [vd(07p)vf(é,p)$-(é,p) 3 1}
- Ya-(&p)72(0,p) 2 (0,p) ]
where T = F(p)/ié,, with a similar result for U'*?.

The behaviour of the stresses near the crack tip may be extracted (using asymptotic results in Appendix
B) from Eq. (5.2) as || — oo, for x < 0:

F(p) <§—d) {M] 1/2( - x)_l/Z] . 0" a,0) ~0; (5.12)

Ut

[

(5.11)

0.0) -l
o, (x,a,t) ~ L e,

this result is checked using an invariant integral for the mode I and mode II stress intensity factors K; and
Kjp in Section 5.3.

5.2.1. Reloading by the compressional wave

In this section we consider the reloading of the crack by the compressional wave reflected by the in-
terface. The same procedure may be followed, with some careful attention to the analysis, in extracting the
successive Wiener—-Hopf equations, to find both the compressional and shear wavefields up to the next
arrival. For now we will only consider the first reloading of the crack, which for some practical purposes
may be thought to be sufficient; further reloadings are briefly examined in Section 5.2.2. An interesting and
unexpected result near the crack tip falls out of this analysis and is more rigorously explored in Section 5.3.
In order to make use of the Wiener-Hopf equation of exponential order exp[—2y,a] we recall that 7% =0
and therefore from the matrix (5.7), or using the displacement potentials (5.8),

2
1,0 p X 1 o
WRULY = ~2,% [a“‘” - E‘%PP(I Ay )e e (000 1) . (5.13)
The coefficients # and %" are related to the reflection coefficients for an incident P or S wave on an in-

terface and a surface in the absence of the fluid respectively, and naturally occur in the equations. Their
precise form is given in Appendix C.
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The corresponding ‘anti-symmetric’ Wiener—Hopf equation this time yields a non-zero t'? (that we
expect to contribute in the next iteration) from

2 1
uRV 0 = —2%1;’—2 10— 32w (a9 + n)} : (5.14)

Our game plan now requires us to split equation (5.13) into the usual Wiener—Hopf form:

_ va-(&:P) 10 _ p 7a-(0,p) _ _C_f 1 (& p) L1 (&, p)
P ene Ep’ O Tm 7 0. (1 ) e G)

2
We have taken in hand the sum split of @(¢, p) into a + function and a — function:

Ca
@(fap) = _%gpﬁ(l - %Z))e—Zvd(i,p)a = @+(éap) + @*(évp% (516)

vl (5.15)

some consideration of the function reveals that O©,(¢ p) = O_(—¢,p) and therefore 260.(0,p) =
0(0,p) = [(1 —€)/(1 + €)]e~ %<, which will be seen to be useful later. The resulting functional equation
yields the unknown stress transform:

10 — _y 2 (0P (Ep) L (C p) © (Ep)— 0 (0.p)), (5.17)

" 94-(&,2)72_(0.p)Z (0, p)
and we extract the stress intensity factor by employing asymptotic result @_(&, p) — O(1/&) as & — oo, i.e.

Fi) () [u} "o 0.0 xrl”];

PTCa

0;;‘(” (x,a,t) ~ L

1(1—¢
0_(0,p) ==

O =359
We may now use this result to find the mode I stress intensity factor, K;(p). In addition, the mode II stress
intensity factor may be found, in a similar manner, by first setting

gpled, (5.18)

A

(¢, p) = )

= A = 0, (Ep) + -(Ep). (5.19)
d,

The functional equation then yields

(10— 7a-(0:p)72 (&P)L(E,p) B
- T+ ”/q,(f,p)“/f,(o,p)llf (07]9) [¢*(éap) @,(O,p)], (520)

and we may extract the stress intensity factor utilising @_(&, p) ~ O(1/¢&) as

o) P!
Cq PpPTc,

as ¢(0,p) = &.(0,p) = 0. As a consequence of this result the mode II stress intensity factor is zero, at least

until the next wave reloads the crack; without the fluid loading and for a stationary crack a similar result is

found by Tsai and Ma (1997). This is consistent with the invariant integral that we use in Section 5.3; there

we conclude that the zero mode II intensity factor is a result of the specific stress loading we have taken on

the crack faces.

We may pursue a modified Cagniard method again to explicitly determine the stress fields anywhere in
the fluid or solid, using these results for unknown transforms and closely following the analysis in Section
2.2. Alternatively, as it is this the case here, we may further investigate the stress intensity factors. We have
seen, when treating the anti-plane example, that this is often best achieved using an invariant integral. First,

1/2

af(l,‘O) (x,a,t) ~ L

@_(0,p)( — X)_”z] ;0. (0,p)=0, (5.21)
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we briefly examine the effect near the crack tip, of some other waves reloading the crack using our iterative
approach.

5.2.2. Reloadings by other waves

The crack is also reloaded by mode-converted and shear waves reflected by the interface whose con-
tributions to the stress field may be found from the following functional equations:
e SP wave

2 1
,uRUil’l)a _ _Zyd]c?_z |:O.(1,1)a _ _%psv@ﬁ\;e*?’daﬂ'xa (O'&O’O) + T+):| ,

2
5 ! (5.22)
v = o 2[00 L (1 e sn(on 7))
cS
o PS wave
(1L, r 1 N —yga—7 0,0
URUL " = —Zydc—z [a(‘ » E%Sp,%pse_'d“_"“” (a0 + T+)]7
; ) (5.23)
RV = 2y 2 [r“v”b =y (1= e (000 L)] :
c? .
e SS wave
0,1 P2 1
pRUOY = —Zydg {0(0‘1) + E%x(l + 2Y)e 2 (a0 4 TQ} ,
25 1 (5.24)
uRV O = —2%% [r“)’l) - E%m%ﬁge‘}““ (a0 + TQ} )
CY

There are two mode-converted waves (SP and PS) that reload the crack and some physical considerations
are required to extract these equations separately from the matrix expansion (C.9)—(C.11) in Appendix C.
In each of these Eqgs. (5.22)—(5.24), the function to be split in order to make the correct combination of +
and — functions is somewhat akin to @ defined in Eq. (5.19) in that it is zero at the pole situated at £, = 0,..
Then, as in that case, some consideration of the + functions implies that they too are zero. Ultimately, this
means that both the mode I and mode II stress intensity factors are zero for each of these successive re-
loadings.

A more complete picture for the stress intensity factors is given in Section 5.3. That section suggests that
we only expect to find a non-zero contribution near the crack tip from purely compressional reloadings on
the crack. This multiply reflected wave becomes increasingly difficult to describe in our iterative language.
However, there are simplifications that occur in the limit as ¢ — oo that we can take advantage of to find
Ki(p) directly. The functional equation in this case is

2 1 1
,uRUf-m = —Zyd% [0-(2=0) — E,%pp(l — ,%Zy) e atg10) _ Ee@ppﬁz)eﬁ’““fg’o)

1 e
- E%ﬂgp%(l - ,@gg) ¢4 (¢00) 4 n)} . (5.25)

so that the equality of a + and — function is ultimately given in terms of the sum split of ¥:
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1 Vaa Va— —2y.a
P — E@,J,,(1 - ,%;:;)e’z“’ [@_(&,p) — 6_(0,p)] + 2;" R e (¢, p) — b (0,p)]
1 N a9 —4dy,a
—Egzppgfpp%p(l — Ay )e
=%, (&p) +P-(Ep); (5.26)

the stress intensity factor is found by evaluating ¥_(0, p) = Iy + [@_(0, p)]’, the other pieces of ¥ do not
contribute. The integral /y is found to be

1 oot dp 1/1-¢€\
Iy = — O(n,p)O_ — == ~Apales 5.27
=g | empe Y=g (155) e, (527)

and this result gives the value of Kj, also found in the following section.

5.3. Invariant integral

In the previous section, we observed that the mode II intensity factor for this specific loading is zero to
O(e~2%4). This is perhaps unexpected and is verified in this section using an invariant integral, together with
some extensions to non-homogeneous media. More general loadings, using a weight function, are not
considered here but could be treated as in Section 4.

Following the approach used in Section 3 a Lagrangian is, this time, deduced in each half space (fluid
and solid) such that the Euler-Lagrange relations recover the governing equations. In the elastic material,
the Lagrangian L is defined as

L= _%(Eijﬁi,j + ppzﬂ[ﬁ[), (528)

and in the fluid half space L\/) is the same expression with superscripts ( f) used to denote displacements
and stresses in the fluid and p replaced by p,. The pseudo energy momentum tensor P, is formed in the
usual manner, i.e.
oL

P = %ﬁi’l —Ldy;. (5.29)
This pseudo energy momentum tensor has Pj;; = 0 so that the integrals defined by F; are invariant. We
should note, see Atkinson and Craster (1995a), that closing a contour around a crack tip gives a term in-
volving 1??( p) +Efl( p) and the physical significance of this result is not clear. Nevertheless, this is a
valuable check on our, or further, numerical work. The designation I or II indicates the independent
contribution due to crack extension in mode I or mode II.

The integrals defined as

F = /Pljn,-dS :/ {—Eijnja,,l +%(6iju,-,j + pp’ug;)ny | dS (5.30)
N N

are zero provided the path S (Fig. 7) does not enclose any singularities and the path remains in the material
for which Py; is defined. In this formula »; is the unit vector normal to S. The integral F; = F; +Fl(f ) is
considered around the contour shown in Fig. 7; the paths in the fluid and the solid have the interface in
common. Near edge fields are used to evaluate the integral around GH in Fig. 7. The only other integrals
that contribute to the invariant are along EF, AB, and F'E’ (in the fluid), and the points at F and 4 along
the crack faces. The stresses at a crack tip are singular, i.e. ¢ ~ KG(0)r~'/2, where r and 0 are polar co-
ordinates based at the crack tip; see Atkinson and Craster (1995b) among others.
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Fig. 7. The path, S, required for the application of the invariant integral in Section 5.

Performing integrals gives

— Py Ginh?
1=V B 2(1?) 1 (coshtd—i—sm Cd)
E (KI +K11)(P) = » 2pcy (e+1)

(e cosh’chJrsinh%) ’ (5.31)

where E is Young’s modulus and v is the Poisson’s ratio; £ and v are related to the shear modulus u and the
wavespeeds ¢y, ¢, by (1 —V?)/E = 3 /4u(c? — ¢2). The stress intensity factor in 0 < ¢st/a < 2 is the first

term in the expansion,
1/1—e¢ 3/1-¢)
1 - —2pa/cq e —4pa/cq L
+2<1—|—e>e +8<1+e>e *

% F e\ [ —c? 172
o =705 ) (%)
This result corresponds to the value of K; that is deduced from Eq. (5.12). The second term is also con-
sistent with Eq. (5.18). This provides a useful independent check upon one part of our analysis. It is
noteworthy that these results are the same as those we would obtain if we had ‘pre-fractured’ the plane
»y = a, and therefore o,, = 0 for all x along y = a. In that case, one only extracts a mode I stress intensity
factor K using the invariant rather than the sum of the squares of both intensity factors. Apart from a term
which comes from the time dependence of the crack loading, the result in Eq. (5.31) only includes the
compressional wavespeed suggesting that no shear waves reload the crack in such a way as to induce
singular shear stresses at the crack tip. Hence, we conjecture that for the specific ‘opening’ loading on the
crack then, in fact, Ky is zero for all time. Further inspection of the iterative scheme confirms this.
Similarly for a ‘shearing’ loading on the crack, like o,, =0, o, = F(f) on y = a, x > 0, then we find the
combination of stress intensity factors to be

. (5.32)

Fz(p) 1 (coshi—‘:—i—sinh’f)
- P 2pc sinh 2 ’

(1-»)
E

=2 =2
(K; +Kyp)(p) (5.33)
and this time Kj is zero.

The stress intensity factor (c,/cq)(1 — c2/c2)' KR (1) = [K2(¢) + K2(1)]'*(n/16a)""* versus non-dimen-
sional time ¢,¢/a is shown in Fig. 8. In panel (a) of this figure, we compare the stress intensity factors under
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Fig. 8. Rescaled stress intensity factors for homogeneous and non-homogeneous materials; see text for details.

moderate, e = 0.2 (—), and zero, e = 0 (— — —), fluid loading, and we can see that the effect of the fluid is to
draw energy away leading to less reflected back towards the crack. In contrast to the anti-plane results in
Figs. 4 and 5 which were for a crack beneath a rigid surface, the stress continuity conditions on the interface
have reloaded the crack in such a way as to increase the stress intensity factor with each successive re-
loading. The result for a crack in an infinite elastic material is shown by the dotted line (- - -).

The organisation of this section has primarily been to investigate the stress intensity factors of the
previous section, and hence, a homogeneous cracked elastic half-space coupled to an overlying fluid. But
there is nothing to stop us, bar some unpleasant algebra, from looking at non-homogeneous materials; for
simple analytical results the moduli variations in the y direction are best given specific forms. For example,
if we choose A(y) = Aoe??”, u(y) = pee?”, and A, (y) = A’ to vary in such a way that c,, ¢, and ¢, are all
constant, then the square of the stress intensity factors is

1—1v?) — —
) ®) + Ko
- fz(p) 1 B (p+6Iy)sinh I'ya+ T’y coshTya (5.34)
204+ 2u)(a) | (Ty+ p) (B + 6Py — I3)sinh I'ya — 677 cosh I'ya '
where
o ”fO(F() ﬂf) (: ¢ when ﬁ — ﬂ/' — 0)’ (535)

~ (o + 2u0)T s

and we have defined I'y = (pz/cd+ﬁ) and I’y = (p*/c2 +ﬂ) As in Section 3, if we now choose
(y) = 20e*=4 and u(y) = pee*»=4! in an infinite elastic body then we find for such a symmetric variation

— - 172
K =2F e 5.36

=202 )| 75 ) (530
The stress intensity factor in Eq. (5.34) when f = 0.3/a, f, = 0.1c,/coa, and € = Arocqa/ (Ao + 2pt9)c, = 0.2 18
shown in panel (b) of Fig. 8. The results in an infinite body are also compared for this inhomogeneity (——-)
and replacing the y dependence of each parameter by |y — a| to make it symmetric about the crack (- -); the
dotted line is when the material is homogeneous as in panel (a). This result (Fig. 8(b)) again demonstrates
how the effect of inhomogeneity can be to increase or decrease the stress intensity factors. In the latter case,
when the material variation is such that the crack, in effect, appears to be within a strip bounded by rigid
walls. It is worth noting that the special situation of a crack centred in a strip (Atkinson and Craster, 1992b)



712 R.V. Craster, D.P. Williams | International Journal of Solids and Structures 38 (2001) 685-716

with either symmetric, or anti-symmetric, loadings applied to the strip walls is a special case, here the
invariant extracts the stress intensity factor (and there is now only one factor due to the complete symmetry
or anti-symmetry of the problem) in a particularly neat and concise manner.

6. Conclusion

An efficient method based on both physical considerations and an iterative approach to the underlying
Wiener—Hopf equation(s) for scattering by a crack is demonstrated in this study. In essence, the equation is
broken into smaller pieces, using generalised ray theory, that capture the wavefield within a finite time
window. Of course it is necessary to pose and solve a series of Wiener—Hopf equations, and this procedure
can become progressively more involved.

To illustrate the scope of the method, we have applied it to both anti-plane and in-plane loadings of a
crack, and extracted the stress fields and the stress intensity factors. It is noted that for a specific class of in-
plane loadings on the crack, namely a spatially constant pure ‘opening’ or ‘shearing’, there is no com-
plementary shearing or opening piece of the stress intensity factors.

A second route taken in this paper is to use an invariant integral to extract the stress intensity factors
directly. This is, in part, an independent check on the results. It also permits some extensions to non-
homogeneous media, where our other approach is less feasible. Some illustrative results are given and it is
anticipated that the general methodology will carry over to problems of a harder nature. The effect of the
inhomogeneity is, of course, dependent on the precise nature of the variation as one moves away from the
crack, and we demonstrate some contrasting behaviour in the stress intensity factors dependent upon
whether the modulus decreases or increases with distance away from the fracture plane.

Specifically, for either stress free or rigid boundary conditions the reloading on the crack faces reinforces
the initial opening stress or it stifles the opening. The non-homogeneous moduli do this in a ‘continuous’
way rather than via the discrete reflections of a layered material.
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Appendix A. Fourier transform results

If F denotes the Fourier transform operator, then

G 1\ @ PHE) Al
# (g ) = )

where # is an integer, and I'(z) is the Gamma function defined to be I'(n + 1) = [;* "e™* dr.
Appendix B. Product splits

In Section 2.1, we have taken in hand the product split of 2(¢&, p) (see Eq. (2.5)). This function is split into
+ and — functions that are analytic and non-zero in the upper and lower complex ¢ planes:

"Q(évp) = ’Q+(57p)’@*(é»p)s
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1 [ log 2(n,p) an 1 /°°i" log 2(n,p)

log2_(&,p) = —5 = Tt log 2. (¢,p) = 5= -
—00+1 00—

=5 dn (B.1)
for —d < Im(¢) < d, where d is some small, positive, real number. It is adequate, in most cases, to compute
this product split numerically, and this is most easily performed using quadratures.

There is a useful limit as b — oo that permits some explicit formulae to be derived. In this case, the
function to be split into a product of 4 functions is 2*(¢, p) = €'/ cosh(y(¢, p)a), and these be con-
structed analytically. The factorisation can be achieved by considering separately the factorisations of e
and cosh ya, and has the familiar form (Noble, 1958),

1 ~ o T .
3 (¢&p) = e &)Y (Cp) H [(1 +p2a’21_1/2672)1/2 _ 1éa;171/2:| a2, (B.2)
n=0

0¥
+

where a,_1 = a/(n — (1/2))r, 2° (¢, p) = 2. (=&, p) and

T

ven=2(e40) ot (). wen=vicen (B.3)

In Eq. (B.2) x(&, p) is an arbitrary function chosen so that 27 and 2" have polynomial behaviour at infinity.
Thus, using well known properties of the gamma function, we choose

— % i Lo
2wEp) = ln{l y+log( 12ap>}+2, (B.4)

where in Eq. (B.4) y is Euler’s constant. In practice, we can avoid these splits by using the modified
Cagniard method.

The Wiener—Hopf method in Section 5 requires the product split of the Rayleigh function, R({), suitably
rescaled. To split this Rayleigh function first consider a new function £ ({) (that appears in Section 5),

(QE+R) —42@C+ )"+ )" (B.5)
2R = 1) +8) | |

the product splits for R({) follow directly from those of Z({): £({) = £ ()& _({). By introducing the
branch cuts Re({) =0, 1 < |Im({)| < k, £({) is made analytic everywhere in this cut { plane. The fol-
lowing asymptotic property is useful: in the limit as || — co, () — 1 + O({™?). These properties of # ()
make the logarithmic function log #({) analytic everywhere in the same cut { plane as #({) and ensures
that the Cauchy integrals converge. Using Cauchy’s theorem #_({) is determined explicitly as

| IR I T € S l)l/z(k2 — 12)]/2 dr
logZ_({) = - /1 tan [ & 20y g (B.6)

Z2(0) =

where Z,({) = % _(—{) and the branch of the inverse tangent is chosen so that 0 < tan! ¢ <1/2. Some
further asymptotic properties of Z. ({) are useful when we come to consider the stress intensity factors: as
|{| = oo then £, () — 1, and £, (0) = k*/[2/2(k* — 1)"/?k,]. Then we have

R_(0) =2"2( =)' (¢,p) 2 (&, p); (B.7)

a rescaling by ¢ = p({/c and k = ¢,/c; is required in the main text.
In more general diffraction problems the kernel function is split similar to the above fundamental
procedure, although often explicit formulae are not forthcoming.
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Appendix C. Reflection coefficients and Wiener—Hopf notation

In the first part to this appendix, the coefficients # and %" are related to the reflection coefficients for an
incident P or S wave on an interface and a surface in the absence of the fluid, respectively (the superscript N
denotes no fluid). The subscripts on % and %" follow the convention that the first denotes the type of
incident wave and the second denotes the type of reflected wave.

There are related transmission coefficients, and coefficients given by incident waves from the fluid, but
these are not required in the application considered in the text.

In the following, the usual notation is used for the Rayleigh, R(¢), and Scholte, S(¢), functions and also
their complements (&) and s(¢):

R(E) = [E 4+ 72O = 480,(0)7,(9), S =R(&) + €14(8)/7,(9),

s aed 5 (C.1)
r(&) = [E+ 72O +480,(O1(8),  5(8) =r(&) = e0a(E)/75(E).
The Laplace transform parameter, p, dependence has been omitted for ease of presentation.
o [Incident P wave:
b SO QP 2@ O
TS S(&) LT R (C2)
A — 4i57d(f)[52 +7:(8)] .
” R(&)
e [ncident S wave:
g — _HE +2Q)] g — SO +8E3(O(9)
sp - b slss — b
5@ S(©) ©3)
R — _4if“/s(5)[52 +7:9)] a2 — (g
o rG T TRE

In Section 5, the problem reduces to the solution of a Wiener—Hopf matrix (5.7):

Ui _ (an an o +7T, ) (C.4)
V+ a1 dx T_
It is unfortunately the case that the matrix terms a;; become rather ugly, and as noted in the text we can

piece together the matrix in orders of the exponential using generalised ray theory. Alternatively, we can
deal with the matrix and perform a series of expansions. The latter route is taken here:

111 ., ., iy
Hay = _Vd% s+t (S + se 2 — (S + 852"/37’?1)672”{1 —(s— 8E%),74)e 2("’“)0) ) (C.5)
c|R X
where
A = SR — sre” " — (S + 8 yyp)re 2 4 (s — 8y, )Re 20010 4 308 (& 4 97) e (e,
(C.6)
Note that in the case of a pre-fractured crack where the boundary condition ahead of the crack is o,, = 0 so

that the shear stresses are zero all along y =a, then the Wiener—-Hopf equation (5.7) reduces to
U, = ay(6_ + 7). The remaining components are as follows:
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Hapy = —uay;
1 )
= é‘[% = (S —sqe — (S + 8y pa)q1e " + (s — 8E )y, )qae a7
+89,74(v; + &) (7 + 3E%)e tatma) | (C.7)
p2 11 24 > +1)a
wan = =95 | 5 +7(S—se 14 (S 4 8Py y)e T — (s — 8Py )e 2t | (C.3)

we have introduced ¢, = (&% + 92 + 2y,7,) and ¢» = (& + 92 — 27,7,,) for convenience.

The leading exponential terms required in the text and relevant to the present article are given by a
Taylor’s expansion. They are intricately connected with the reflection and transmission coefficients but this
is, often, not transparent when each component is taken in turn:

pRay; ~ —lez—; {2 +§ (1 +%)e*2’*’d” —%ﬁzmd (1 —1%) e 2 2(1 +S) (1 —%)e’(’””s}”
P2 (1 Dot - S8 E)} )

,LtRzalz = —,uRzaﬂ

2 2 2 5
i 2, P |8 e ST 800 2 a_SHSH WA ~Ga+rda o ST o—dyga
~4idyp, (¢ +/S)§[—€ ! +f6 ’ —fe at SR 4

S+8E,0.)°r
L 8T

ok (C.10)
HRax ~ =), {2 -3 (1 - E) e 2 4 %m (1 +£)e*2%” + 2(1 + %) (1 —%)e*“’dﬂu)a
(=g BRI (14 e e

Similarly, the expressions for the stresses and displacements are recovered from an expansion in terms of
the displacement potentials.
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