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Abstract

Complementary techniques are used to investigate the dynamic loading of subsurface cracks in either homogeneous

or non-homogeneous media; the quantities of interest such as the scattered ®elds and the stress intensity factors are

determined. For homogeneous media, these involve solutions utilising transform methods and the Wiener±Hopf

technique. To ease interpretation, an iterative method based on physical considerations is developed. For special

loadings, invariant integrals are utilised to provide non-trivial extensions of the analysis to non-homogeneous media, at

least insofar as the stress intensity factors are concerned. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dynamic stress loading of cracks, and the related fracture mechanics, is an area that has received
much attention; for a detailed description see Freund (1990), Atkinson and Craster (1995b). There is
particular interest in wave or pulse interactions with cracks that lie beneath surfaces or interfaces, as
material failure or interfacial debonding is often caused by the subsequent growth of cracks. There has also
been resurgent interest in the modelling of fracture in non-homogeneous solids (Craster and Atkinson,
1994; Choi, 1997; Erg�uven and Gross, 1999), as modern fabrication methods and functionally graded
materials become of more use; thus, we also address some aspects of crack-wave interactions in non-
homogeneous media.

Determining the stress ®elds, and crack tip stress intensity factors, generated by the interaction of stress
waves with cracks, and boundaries, is of fundamental interest in fracture mechanics. It is also of great
interest in the non-destructive evaluation of structures. The scattered ®eld yields information for crack
detection and characterisation, thereby enabling estimates to be made of the location and size of the crack.
The presence of an interface or free surface is a complicating feature and analytical solutions are often

International Journal of Solids and Structures 38 (2001) 685±716

www.elsevier.com/locate/ijsolstr

* Corresponding author. Fax: +44-207-594-8517.

E-mail address: r.craster@ma.ic.ac.uk (R.V. Craster).
1 Current address: Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La

Jolla CA 92093-0238, USA.

0020-7683/01/$ - see front matter Ó 2000 Elsevier Science Ltd. All rights reserved.

PII: S00 2 0-7 6 83 (0 0 )0 01 0 9- 8



di�cult to obtain (Tsai and Ma, 1992, 1993). In these previous analyses for in-plane loadings the results are
valid until the ®rst wave scattered from the crack returns to the crack after having been re¯ected by the free
surface. With the addition of an overlying ¯uid there are no current analyses. For anti-plane loadings the
analysis becomes slightly simpler. One can utilise the method of images (Achenbach, 1973) for some rather
special problems to extract the full solutions; however typically the situations are often somewhat more
complicated.

The aim of this paper is to develop approaches that generate the stress intensity factors and give the
exact form of the wavefronts, up to a speci®ed time, generated by the dynamic loading of a semi-in®nite
subsurface crack. For ease of exposition we consider cracks that are parallel to the interface, the results may
be generalised to look at cracks arbitrarily orientated to the interface; these results are not presented here. A
variety of di�erent stress loadings may be considered and here we consider the crack to be subjected to a
prescribed stress loading on the crack faces and if required this could be chosen to be that induced by an
incident pulse and hence identical to a scattering problem. Unfortunately it turns out that the plane strain
problem cannot currently be solved conveniently and with this in mind we introduce an iterative (or
generalised Wiener±Hopf) method in which successively the Cagniard±de Hoop (Flinn and Dix, 1962; de
Hoop, 1960) and Wiener±Hopf (Noble, 1958) techniques are applied to solve a matrix Wiener±Hopf
equation. This follows the scheme presented by Haak and Kooij (1996) and Kooij and Quak (1988) for
anti-plane problems. The application of the Cagniard±de Hoop technique follows Garvin (1956) and Harris
(1980). The iterative scheme is illustrated in detail on an anti-plane crack problem and, in addition, we
demonstrate how weight functions can be incorporated into the iterative scheme.

The analysis is performed using Fourier and Laplace transforms in space and time respectively. The
Laplace transform in time, t, and its inverse, are de®ned as

f �p� �
Z 1

0

f �t�eÿpt dt; f �t� � 1

2pi

Z c�i1

cÿi1
f �p�ept dp for Re �c� > 0; �1:1�

where the Laplace transform variable is p. The Fourier transform in one spatial direction, x, and its inverse,
are de®ned as

ef �s� � Z 1

ÿ1
f �x�eisx dx; f �x� � 1

2p

Z 1

ÿ1
ef �s�eÿisx ds; �1:2�

where s is the Fourier transform variable. We also utilise the Cagniard±de Hoop technique.
One of the most useful results found during any study of crack behaviour is the stress intensity factor; it

is the stress intensity factor that characterises the near crack tip stress ®eld. Here the results for the stress
intensity factors are checked, and in some cases extended, using an invariant integral based on a pseudo
energy momentum tensor (Atkinson, 1977; Atkinson and Craster, 1995a); which is a generalisation of the
Eshelby (1951, 1970) energy momentum tensor. In particular, for a class of crack loadings, it enables us to
investigate the e�ects of material inhomogeneity without any need for Wiener±Hopf analysis. This is
motivated by the current interest in non-homogeneous or layered media.

For simplicity, we treat a simple spatial form of stress loading on the crack faces. We then demonstrate
how weight functions (Bueckner, 1970) can be deduced within this iterative procedure and this allows us to
generalise the stress intensity factor results to deal with any stress loading.

The plan for the following ®ve sections of this article is as follows: ®rst, in Section 2, we consider the anti-
plane problem of a semi-in®nite crack in a layered elastic material. The exact solution is found as an inverse
integral using the Wiener±Hopf technique. This integral could then be evaluated numerically; these results
are not included. Instead, we employ an iterative generalised Wiener±Hopf method (Thau and Lu, 1971)
that yields a series solution. The motivation for developing this approach is that the exact solution contains
a triple integral to evaluate and this obscures the physical interpretation of the solution. Also, the analo-
gous problem of a subsurface crack in an elastic solid cannot currently be solved conveniently as one
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obtains a matrix Wiener±Hopf equation whose factorisation is awkward; we brie¯y consider this case in
Section 5 for the special case of a spatially uniform crack loading. An invariant integral is introduced in
Section 3 which is then used to explore some model non-homogeneous materials, the aim is to illustrate the
method as a useful analytical tool. Following this, in Section 4, we develop an iterative weight function
method thus enabling us to use the generalised ray method to ®nd formulae for the stress intensity factors
exact up to a speci®ed time.

The in-plane crack problems are substantially more complicated, involving mode coupling at both the
crack tip and the interfaces. We brie¯y illustrate how the techniques developed in the simpler anti-plane
case carry across to this harder situation in Section 5. Finally, a summary of the results is given in Section 6.

2. Anti-plane loading

We consider an elastic layer in 0 < y < b, bonded to a semi-in®nite elastic material that occupies the half
space b < y <1; along the interface, y � b, the stress and displacement ®elds of the two materials satisfy
continuity conditions. Within the elastic layer, a semi-in®nite crack is present along y � a �a < b� for x > 0;
this is shown in Fig. 1. This ®gure also shows the ®rst re¯ected waves for t < r1 � 2a=c, where
r2

1 � x2 � �y ÿ a�2; bÿ a > 2a. This is after the wave from the crack that has been re¯ected from the surface
strikes the crack, but before this wave returns to the surface, and before the wave re¯ected by the interface
strikes the crack.

Fig. 1. The geometry of the problem shown together with a schematic of the ®rst re¯ected waves.
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A Cartesian coordinate system is adopted with x1, x2 corresponding to x and y. The problem is two-
dimensional and the relevant stress components, rzj�x; y; t�, are related to the out-of-plane, that is, in the z
direction displacements uz�x; y; t� via

rzj � luz;j; �2:1�
where the comma denotes di�erentiation with respect to xj and l�x; y� is the elastic shear modulus. The
governing equations are the equilibrium equations rzj;j � q�uz, where the notation denotes partial double
di�erentiation with respect to time and q�x; y� is the material density. The displacement satis®es

o
ox

l
o
ox

� ��
� o

oy
l

o
oy

� ��
uz � q�uz �2:2�

which reduces to the wave equation r2uz � �uz=c2 when the material parameters l and q are constant; the
wavespeed c is then de®ned as c2 � l=q. To distinguish between the di�erent materials in the layer and
underlying half space a superscript �h� is adopted to denote the elastic half space y > b. In this section, we
henceforth assume that the material is homogeneous so l and q are constant; we consider non-homoge-
neous materials in Section 3.

The surface y � 0 is taken to be rigid, hence, uz � 0 there; a very similar analysis can be performed if the
surface is stress-free. The crack lies in undamaged material so the condition taken ahead of the crack, y � a
for x < 0, is that the displacement uz is continuous there, and the stress rzy is continuous along y � a,
ÿ1 < x <1. The loading taken on the crack y � a, x > 0 is that rzy � F �t�H�x�, where F �t� is the time
dependence of the pulse and H�x� is the Heaviside function. Later, in Section 4, we utilise our solution in
conjunction with weight functions to extend our ®nal results to any spatial loading. Along the interface,
y � b, both the displacement uz and stress rzy are continuous, i.e. uz� u�h�z and rzy � r�h�zy .

2.1. Exact solution

First we shall solve the problem exactly, and then using an iterative approach. To formulate a functional
equation, we apply Fourier transforms in the spatial x coordinate and Laplace transforms in time, together
with the following half-range Fourier transforms: the transform of the unknown stress rzy ahead of the
crack y � a for x < 0, and the transform of the unknown jump in the displacement, uz, across y � a for
x > 0,

rÿ�n; p� �
Z 0

ÿ1
rzy�x; a; p�einx dx; U��n; p� �

Z 1

0

uz�x; a�; p�� ÿ uz�x; aÿ; p��einx dx: �2:3�

The subscripts � and ÿ denote functions analytic in the `plus' and `minus' regions of the complex n plane,
respectively; speci®cally in Im �n� > 0 and in Im �n� < min�p=c; p=c�h��, respectively. In the following, we
loosely refer to these regions as the `upper' and `lower' halves of the complex n plane. The superscripts �
�ÿ� for a� �aÿ� denote the limit as we approach the crack faces �y � a� from above (below).

The Wiener±Hopf technique generates a functional equation that connects the transforms of these
unknown quantities. This equation is then disentangled to identify the unknowns, and hence it determines
the full solution. Along the way we require, of course, to satisfy the edge conditions, that is in terms of polar
coordinates �r; h� based at the crack tip, the displacements are O�r1=2� and the stresses are O�rÿ1=2� at the
crack tip. The functional equation emerges as

Q�n; p� rÿ�n; p�� � ���n; p�� � ÿlc�n; p�U��n; p�; where �� � F �p�
in�

; �2:4�

the function �� has been introduced for convenience. To incorporate the speci®c loading adopted here, i.e.,
the spatially constant stress loading we adopt the convention that the pole at zero is in the lower half of the
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complex n plane; this is, it is a `plus' function and we remind ourselves of this fact using the subscript �
upon n and � . In Eq. (2.4), F �p� is the Laplace transform of the time dependence of the stress loading, F �t�,
and the function c�n; p� �c�n; p��h�� is de®ned as c�n; p� � �n2 � p2=c2�1=2 �c�h��n; p� � �n2 � p2=c�h�

2 �1=2�. The
branch cuts for these functions, in the complex n plane, are taken such that they run along the imaginary
axis from �ip=c (�ip=c�h�) to �i1.

A function Q�n; p� is introduced in Eq. (2.4), and is de®ned as

Q�n; p� cosh�ca� � l�h�c�h� sinh�cb� � lc cosh�cb�
l�h�c�h� cosh�c�bÿ a�� � lc sinh�c�bÿ a�� ; �2:5�

where c � c�n; p� and c�h� � c�h��n; p�. This function captures all the essential physics of the wave re¯ections
from the surface, crack faces and interface together with the waveguide nature of the geometry.

The next step in our Wiener±Hopf recipe involves separating the functional equation (2.4) into a piece
that is analytic in the � region, and a piece that is analytic in the ÿ region. These pieces have a common
overlapping region in the n plane, and thus are equal to the same analytic function within this strip. Hence,
by analytic continuation, both sides must equal a function that is analytic everywhere. This must remain
true even as jnj ! 1, and so (by Liouville's Theorem) this function is a polynomial in n. This allows us to
®nd the unknown transforms analytically. This polynomial is determined by applying the known edge
behaviour at the crack tip, i.e., the stresses are O�rÿ1=2� there.

In order to make the split into the standard Wiener±Hopf form the function Q�n; p� is split into a
product of � functions: Q�n; p� � Q��n; p�Qÿ�n; p�; a related splitting is described in Appendix B, here, it is
ultimately most easily performed in terms of some quadratures. We also require the product split
c�n; p� � c��n; p�cÿ�n; p�, where c��n; p� � �n� ip=c�1=2

� .
We now rearrange the functional Eq. (2.4) so that the left- and right-hand sides are analytic in the upper

and lower halves of the complex n plane respectively:

l
c��n; p�
Q��n; p�U� � ��

Qÿ�0; p�
cÿ�0; p�

� ÿQÿ�n; p�
cÿ�n; p�

rÿ ÿ �� Qÿ�n; p�
cÿ�n; p�

�
ÿ Qÿ�0; p�

cÿ�0; p�
�
: �2:6�

The regions of analyticity overlap on 0 < Im �n� < min �p=c; p=c�h��; this is enough to invoke analytic
continuation and to determine that both sides of the functional equation can be extended to the full
complex n plane, and hence are equal to the same analytic function everywhere. Using the edge conditions
(the stresses in the limit as r ! 0 are O�rÿ1=2�), this function is determined to be zero.

One of the most immediate results that can be deduced from the functional equation is the behaviour of
the stress near the tip of the crack. The limit as jnj ! 1 in the transform space corresponds to the limit as
x! 0 in the physical domain. The stress ahead of the tip of the crack is rÿ�n; p� from which

rzy�x; a; p� � F �p� cQ�0; p�
2pp

� �1=2

�ÿx�ÿ1=2 � KIII�p��ÿ2px�ÿ1=2
for x < 0: �2:7�

To obtain this result, we have employed the inverse Fourier transform given in Appendix A and the result
Qÿ�n; p� ! 21=2 as jnj ! 1. The mode III Laplace transformed stress intensity factor KIII�p� � K�p� is also
de®ned by Eq. (2.7) and hence can be explicitly extracted; that result is also extracted using an invariant
integral in Section 3. The full solution for the stresses in the elastic layer is identi®ed from Eq. (2.6) as

rzy�x; y; p� � 1

2pi

Z c�i1

cÿi1

1

2p

Z 1

ÿ1

F �p�cÿ�n; p�Qÿ�0; p� cosh�cy�
in�cÿ�0; p�Qÿ�n; p� cosh�ca� eÿinx dnept dp �2:8�

for 0 < y < a. A similar expression may be deduced in a < y < b; these results are not included here. So far,
we have taken the stress loadings to be uniform along the crack faces, however, we may routinely generalise
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this to any loading of the form rzy � F �t�G�x�. For ease of presentation, we restrict ourselves to the stress
intensity factors. The stress ahead of the crack tip is now asymptotically

rzy�x; a; p� � ÿF �p� 1

�2pi�1=2
ÿ

1

2pi

Z 1

ÿ1

Qÿ�v; p�eG�v�
cÿ�v; p�

dv

 !
�ÿx�ÿ1=2H�ÿx�; �2:9�

where eG�v� is the Fourier transform of G�x� (with Fourier transform variable v). We also note that
Qÿ�v; p� � 21=2 �O�eÿ2c�v;p�a� to deduce the solution for a single crack in an in®nite homogeneous material.
This general formula is useful in comparison with one obtained later using weight functions.

These formulae formally solve the canonical problem. A direct numerical evaluation of the integrals
above can be performed, but this is not overly revealing. In case when we expect the ®rst few arrivals to
completely characterise the solution, it proves to be more straightforward to proceed iteratively. Hence
we choose to develop a method that iteratively solves Eq. (2.4) rather than formally expand the integral in
Eq. (2.8).

In this section we have made a direct product split Q � Q�Qÿ. The essence of a generalised ray approach
is rather than digest Q in its entirety, we swallow it as smaller more manageable portions, i.e.,

1

Q
� 1

2
1

�
� exp� ÿ 2ca� � l�h�c�h� ÿ lc

l�h�c�h� � lc

� �
exp� ÿ 2c�bÿ a�� � � � �

�
�2:10�

and each term of Q now contains all the physics up to a speci®c time; the terms involving l�h�, c�h�, l, and c
can be identi®ed with re¯ection coe�cients from the interface or surface, and thus each term has physical
signi®cance. Each term of Q is ultimately split into a product Qj

�Qj
ÿ of � and ÿ functions; however, the

`sum of products' that we construct does not, as a whole, have an obvious factorisation into a product of �
and ÿ functions so that Q� (or Qÿ) is not easily recovered from its smaller portions as we may, at ®rst,
expect.

2.2. Iterative solution

In this section, we utilise an iterative scheme similar to that described by Kooij and Quak (1988) and
Haak and Kooij (1996) to solve the problem we formulated in the previous section. This places the physical
language of various superpositions, see for instance Tsai and Ma (1993), in a more rigorous setting. This
approach lends itself well to further generalisations.

To formulate the current problem the original functional Eq. (2.4) is split into a series of less complicated
subsidiary equations. Each equation then corresponds to the wave®eld due to successive re¯ections from
the crack, the interface and the surface. In the following, we drop the tilde and overline decoration on uz

and write euz�n; y; p� as uz to shorten the notation; the same convention applies to rzy .
We expand uz in generalised wave constituents, that is, each constituent has the property that its

wavefront corresponds to the ray path that is described by a generalised ray of the same class (in the sense
of number of re¯ections);

uz �
X1
m�0

X1
n�0

u�m;n�z in 0 < y < a; �2:11�

with a similar expression for uz in y > b and for rzy . Similarly we expand the unknown quantities in the
transform domain rÿ � rÿ�n; p� and U� � U��n; p�; the arguments n and p are again omitted here and in
c�n; p�. The superscripts �m; n� correspond to m re¯ections against the interface, y � b, and the crack, and n
re¯ections against the surface of the elastic layer, y � 0, and the crack. The functional Eq. (2.4) is rewritten
as
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2 rÿ� � ��� 1�Reÿ2cb

1ÿReÿ2c�bÿa�

� �
� ÿlc 1

ÿ � eÿ2ca
�
U�; �2:12�

where R is the re¯ection coe�cient at the interface of two dissimilar half spaces:

R � lcÿ l�h�c�h�

l�h�c�h� � lc
: �2:13�

The re¯ection coe�cient at a rigid surface is, of course, ÿ1; so there is no need to introduce any extra
notation for that re¯ection coe�cient, although one can envisage having yet another elastic material in
y < 0 and then requiring a re¯ection coe�cient for re¯ected waves from y � 0. Using the expansion in
Eq. (2.11), we split the functional equation (2.12) into a series of simple functional equations each of which
is order exp�ÿ2mc�bÿ a� ÿ 2nca�. Doing so, we arrive at the following explicit functional equations:

s�0;0�ÿ � ÿ1
2
lcU �0;0�� ;

s�0;n�ÿ � ÿ1
2
lc U �0;n��
�

� U �0;nÿ1�
� eÿ2ca

�
for n P 1;

s�m;0�ÿ �
Xmÿ1

q�0

Rmÿqeÿ2�mÿq�c�bÿa�s�q;0�ÿ � ÿ 1

2
lcU �m;0�� for m P 1;

s�m;n�ÿ �
Xmÿ1

q�0

Rmÿq s�q;n�ÿ
ÿ � r�q;nÿ1�

ÿ eÿ2ca
�
eÿ2�mÿq�c�bÿa� � ÿ 1

2
lc U �m;n��
�

� U �m;nÿ1�
� eÿ2ca

�
for m; n P 1:

�2:14�
In these formulae s�0;0�ÿ � r�0;0�ÿ � �� and otherwise s�m;n�ÿ � r�m;n�ÿ . To recover the stresses in 0 < y < a, we
require a further expansion that has the following form:

r�m;n�zy �
Xn

q�0

�
"

ÿ 1�qs�m;nÿq�
ÿ eÿ2qca

#
eÿca ecy� � eÿcy�; �2:15�

recall that rzy �
P1

m�0

P1
n�0 r�m;n�zy . The stresses in a < y < b and b < y are not included here, but may be

found in a similar way. Note that each successive solution in Eq. (2.15) includes both forward and back-
ward going waves to �1 and ÿ1, respectively, i.e. both the waves di�racted by the crack and re¯ected by
the ®xed surface at y � 0 and the interface at y � b are described by a single iteration. A more physical
approach that we could choose to exploit relies on a superposition of three separate problems. This ap-
proach is brie¯y described in Section 2.3.

2.2.1. First loading
The zero order functional equation from the ®rst equation of Eq. (2.14) is

2 r�0;0�ÿ
ÿ � ��

� � ÿlcU �0;0�� : �2:16�
This is equivalent to the standard in®nite medium problem (Freund, 1990) as the crack is initially unaware
of either the surface or interface, and the unknown transforms emerge as

U �0;0�� � ÿ 2��
lc��n; p�cÿ�0; p�

; r�0;0�ÿ � �� cÿ�n; p�
cÿ�0; p�
�

ÿ 1

�
; �2:17�

from which we may deduce the zero order di�racted stress ®eld explicitly. A more striking result that falls
out of the analysis is the behaviour at the tip of the crack; we can extract the leading behaviour (using
inverse Fourier results from Appendix A) as
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r�0;0�zy �x; a; t� � Lÿ1 F �p� 2c
p

� �1=2

�
"

ÿ 2px�ÿ1=2

#
; �2:18�

where L denotes the Laplace transform operator. This result veri®es, in part, the near stress ®eld evaluated
in Eq. (2.7).

It is straightforward to ®nd the zero order solution utilising the Cagniard±de Hoop method, a detailed
description of the method may be found in Miklowitz (1978) and others. In this case, it transpires that we
require two di�erent inversion contours, chosen so that cT � �f2 � 1�1=2�aÿ y� � ifx and cT � �f2�
1�1=2�a� y� � ifx, for time T real and positive. This is equivalent to constructing a generalised ray path; the
path describes the vertical distance travelled by each wave, the total horizontal distance, and the direction
of propagation. This device places the inverse Fourier integral in the form of a Laplace transform; in
further iterations, this is not enough and we are required to formulate further Cagniard paths. We now
require the inverse Laplace transform of this integral and as a result the solution in real time is found
immediately by inspection. The explicit solution, for a general time dependence, is

r�0;0�zy �x; y; t� �
Z t

0

F �t ÿ s� 1

p
H�s
�

ÿ r1=c�Re
cÿ�f1�s��

if1�s�cÿ�0�
df1�s�

ds

� �
� H�sÿ r2=c�Re

cÿ�f2�s��
if2�s�cÿ�0�

df2�s�
ds

� ��
ds: �2:19�

In this formula, r2
1;2 � x2 � �y � a�2. We have also added some further decoration on the Cagniard paths:

cT � c�f1;2�T ���a� y� � if1;2�T �x, and a rescaling c�f� � �f2 � 1�1=2
. This solution corresponds to the cy-

lindrical wave®elds in x < 0 generated by the crack and subsequently re¯ected by the surface y � 0. It is
formally valid in the interval 0 < t < �r1 � 2a�=c. In addition, in x > 0 waves parallel to the crack faces are
generated and in this case are given, by a residue calculation, in the form F �t ÿ �aÿ y�=c��
F �t ÿ �a� y�=c�. In further iterations, it is necessary to formulate the integral in terms of `plus' and `minus'
functions in x < 0 and x > 0 respectively as a result of shifting the integration path in the upper and lower
halves of the complex n plane. In Eq. (2.19), this distinction is not necessary. This result is plotted in Fig. 2
for the case F �t� � d�t�.

2.2.2. Reloading by the surface
To proceed we utilise the zero order solution we have determined in Section 2.2.1 to reload the crack and

®nd the waves di�racted by the crack in this case. The Wiener±Hopf equation of exponential order
exp�ÿ2ca� is given by Eq. (2.14) as

2r�0;1�ÿ � ÿlc U �0;1��
�

� eÿ2caU �0;0��
�
: �2:20�

In order to utilise the Wiener±Hopf equation, we de®ne Q�0;1� � eÿ2ca and this function is split into the sum
of � functions, i.e. Q�0;1� � Q�0;1�� � Q�0;1�ÿ , where

Q�0;1�� �n; p� � �
1

2pi

Z
C�

Q�0;1��g1; p�
g1 ÿ n

dg1 � �
1

2pi

Z
C�

eÿ2c�g1;p�a

g1 ÿ n
dg1; �2:21�

and Q�0;1�� �n; p� � Q�0;1�ÿ �ÿn; p�; C� (Cÿ) is the contour from ÿ1 to1 indented below (above) the real axis.
After some Wiener±Hopf analysis, we arrive at the following expressions for the unknown transforms:

r�0;1�ÿ � cÿ�n; p���
cÿ�0; p�

Q�0;1�ÿ �n; p�
� ÿ Q�0;1�ÿ �0; p�

�
; U �0;1�� �

2�� Q�0;1�� �n; p� � Q�0;1�ÿ �0; p�
h i

lc��n; p�cÿ�0; p�
: �2:22�
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2.2.2.1. Near crack tip stress ®eld for O�eÿ2ca�. We can again obtain the near tip behaviour either via taking
the limit jnj ! 1, that corresponds to x! 0, in the inverse Fourier integral and evaluating the remaining
integral in g1, or equivalently utilising expression (2.22) directly. In the limit as jnj ! 1 then

Q�0;1�� �n; p� ! 0, and the near crack tip behaviour may now be extracted by evaluating Q�0;1�ÿ �0; p� only. This
is obtained by collapsing the integral around the branch cut that runs from ip=c to i1 in the upper half
plane and then evaluating the resulting de®nite integral using 3.7166 of Gradshteyn and Ryzhik (1980).
That is

Q�0;1�ÿ �0; p� �
1

p

Z p=2

0

sin�2pa tan w=c� tan wdw � 1

2
eÿ2pa=c � 1

2
Q�0;1��0; p�; �2:23�

so that we obtain

r�0;1�zy �x; a; t� � ÿLÿ1 F �p� 2c
p

� �1=2
1

2
eÿ2ap=c�

"
ÿ 2px�ÿ1=2

#
: �2:24�

The results for the stress intensity factor presented here using an iterative approach are again consistent
with those obtained by expanding Eq. (2.7). We provide a further check on this analysis using an invariant
integral in Section 3.

2.2.2.2. Near crack tip stress ®eld for O�eÿ4ca�. Before we proceed to compute the stress ®eld in this case, we
brie¯y focus our attention on determining a further stress intensity factor. It is observed that the evaluation
of further wave®elds needs only the solution of a ®nite set of Wiener±Hopf equations. To evaluate this next
re¯ection, we require

Fig. 2. The stress ®eld for the case F �t� � d�t� valid in t < r1 � 4a=c for x=a � ÿ0:02 and y=a � 0:6; also shown by the �� � �� is the

equivalent result in an in®nite body.
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Q�0;2��n; p� � Q�0;1��n; p� Q�0;1�� �n; p�
h

� Q�0;1�ÿ �0; p�
i
� Q�0;2�� �n; p� � Q�0;2�ÿ �n; p�; �2:25�

where

Q�0;2�ÿ �n; p� � ÿ
1

2pi

Z
Cÿ

eÿ2c�g2;p�a

g2 ÿ n
Q�0;1�� �g2; p�
h

� Q�0;1�ÿ �0; p�
i
dg2; �2:26�

and Q�0;2�� �n; p� is similarly de®ned. As before, the near crack tip behaviour may now be extracted by
evaluating Q�0;2�ÿ �0; p� � IQ � Q�0;1�ÿ �0; p�

� �2
. This is obtained by collapsing the integral IQ around the branch

cut that runs from ip=c to i1 in the upper half plane, and in this case evaluating the resulting double
de®nite integral:

IQ � 1

p2

Z 1

p=c

Z 1

p=c

sin 2 w2 ÿ p2

c2

� �1=2

a
� �

sin 2 v2 ÿ p2

c2

� �1=2

a
� �

w�v� w� dvdw � 1

8
eÿ4pa=c: �2:27�

Using this result, we have found Q�0;2�� and hence the near crack tip behaviour:

r�0;2�zy �x; a; t� � Lÿ1 F �p� 2c
p

� �1=2
3

8
eÿ4ap=c�

"
ÿ 2px�ÿ1=2

#
: �2:28�

The stress intensity factors are discussed in detail in Section 3.
Following our short aside, the stress ®eld may be written as

r�0;1�zy �n; y; p� � ÿF �p� cÿ�n; p�
cÿ�0; p�

1

2pi

Z 1

ÿ1

eÿ2c�g1;p�a

ig1�g1 ÿ n� dg1

� �
ec�yÿa�ÿ � eÿc�y�a��; �2:29�

where we have written Q�0;1�� �n; p� and Q�0;1�ÿ �0; p� explicitly. In the present case, we wish to invert a trans-
formed ®eld quantity that already contains an integration over the variable g1. Following Harris (1980), we
introduce Cagniard contours in both the f plane, as described above, and the g1 plane,

ct1 � 2�g2
1 � 1�1=2a: �2:30�

We shift the f and g1 integrations onto contours along which T and t1 are real. The g1 path is de®ned by

g�1 �t1� � � ct1

2a

� �2
�

ÿ 1

�1=2

for
2a
c
< t1; �2:31�

and the f1;2�T � path employed in the ®rst iteration is here expressed explicitly as

f1;2�T � � ÿi
cT
r1;2

sin h1;2 � cT
r1;2

� �2
"

ÿ 1

#1=2

cos h1;2 for
r1;2

c
< T ; �2:32�

we have taken the branch of the path with positive square root.
The modi®ed Cagniard method (Harris, 1980) relies on a change of order of integration and the result

t � t1 � T to rewrite the integral in the usual Cagniard form. Then the time transform is of such a form that
the inverse transform can be identi®ed for any general loading, F �t�, in 0 < y < a as

r�0;1�zy �x; y; t� �
Z t

0

F �t ÿ s� 1

2p2
H�s
"

ÿ �r1 � 2a�=c�
Z sÿ2a=c

r1=c
G�0;1��f1�T �; g1�sÿ T ��dT

� H�sÿ �r2 � 2a�=c�
Z sÿ2a=c

r2=c
G�0;1��f2�T �; g1�sÿ T ��dT

#
ds; �2:33�
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where the function G�0;1� is de®ned by

G�0;1��f�T �; g1�t1�� � ÿIm
of
oT

cÿ�f�
cÿ�0�

1

ig�1 �g�1 ÿ f�
og�1
ot1

��
ÿ 1

igÿ1 �gÿ1 ÿ f�
ogÿ1
ot1

��
: �2:34�

In Fig. 2, the wave®eld valid in time 0 < t < r1 � 4a=c, i.e. rzy � r�0;0�zy � r�0;1�zy �O�eÿ6ca; eÿ2c�bÿa��, until
the second wave re¯ected by the surface returns to the crack, is shown in x < 0 and 0 < y < a for the
loading F �t� � d�t�. In addition in x > 0 waves parallel to the crack faces are generated and proceed to be
re¯ected by the surface in a similar way. There is a one-sided singularity associated with each cylindrical
wavefront, and these can be seen in Fig. 2; further re¯ections give rise to other singularities.

As x=a is increased the sharp peak that occurs close to the wave arrival is smoothed out. When y=a� 1
and the observer is near to the ®xed surface then the amplitude of the re¯ected wave is increased and arrives
near to the wave incident on the surface. Similarly, when y=a � 1 and the observer is now near the crack
then the di�racted wave and the wave incident on the crack arrive close together. These observations may
be predicted by physical considerations.

So far the formulation and analysis has been for a crack in a semi-in®nite half space 0 < y <1; i.e. the
crack is unaware that it is in a layer above a half space. In 0 < y < a, the e�ect of the interface between
the elastic layer and half space is ®rst seen after time t > r1 � 2�bÿ a�=c, i.e. after the ®rst wave re¯ected by
the interface returns to the crack. The previous analysis and Fig. 2 have assumed that bÿ a > 2a. This
problem is considered brie¯y in Section 2.2.3.

2.2.3. Reloading by the interface
In this case, the Wiener±Hopf equation of exponential order exp�ÿ2c �bÿ a�� is given by Eq. (2.14) as

ÿ2 r�1;0�ÿ
� �R r�0;0�ÿ

ÿ � ��
�
eÿ2c�n;p��bÿa�� � lcU �1;0�� : �2:35�

Following the approach used in Section 2.2.2, we de®ne Q�1;0��n; p� � eÿ2c�bÿa�, split this into � functions,
Q�1;0� � Q�1;0�� � Q�1;0�ÿ , and extract the expressions for the unknown transforms:

r�1;0�ÿ � ÿ��cÿ�n; p�R
cÿ�0; p�

Q�1;0�ÿ �n; p�
� ÿ Q�1;0�ÿ �0; p�

�
;

U �1;0�� � ÿ
2��R Q�1;0�� �n; p� � Q�1;0�ÿ �0; p�

h i
lc��n; p�cÿ�0; p�

:

�2:36�

2.2.3.1. Near crack tip stress ®eld for O�eÿ2c�bÿa��. In the same way that we evaluated the near crack tip
behaviour in Section 2.2.2 in this case it may be extracted by evaluating Q�1;0�ÿ �0; p�. Again using integral
3.7166 in Gradshteyn and Ryzhik (1980) (or evenness of function Q�1;0��n; p�), we ®nd that

r�1;0�zy �x; a; t� � ÿLÿ1 F �p� c
pp

� �1=2
1

2
Deÿ2p�bÿa�=c�

"
ÿ x�ÿ1=2

#
; �2:37�

where D � �lc�h� ÿ l�h�c�=�l�h�c� lc�h�� and this result is consistent with the solution in Eq. (2.7).
Out of completeness, the stress ®eld in this case is

r�1;0�zy �n; y; p� � ÿ
��cÿ�n; p�
cÿ�0; p�

R Q�1;0�ÿ �n; p�
� ÿ Q�1;0�ÿ �0; p�

�
ec�yÿa�ÿ ÿ eÿc�y�a��; �2:38�

this expression may be routinely inverted using the Cagniard±de Hoop method described in Section 2.2.2.
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2.3. Comment on fundamental solutions

An alternative approach of generating an iterative solution is to treat as separate problems the loading of
the crack, the surface of the elastic layer, and the interface between the elastic layer and the underlying half
space; each of these successive iterations takes the negative of the previous solution as its loading. This can
be shown to be completely consistent with the analysis presented in the earlier sections and it has been used
as a consistency check; the details are not included. Physically, this approach has some advantages over the
iterative scheme used in Section 2.2 and in Haak and Kooij (1996); in a more complicated coupled situ-
ation, such as the in-plane scattering problem of Section 5, where identifying the wave®elds is less ele-
mentary, it is sometimes more convenient to adopt this separation approach and extract each scattered ®eld
independently.

3. Invariant integral

In this section, attention is given to the ®eld near the crack tip, which is completely characterised by the
stress intensity factor, and in particular we focus upon non-homogeneous materials. The results for the near
crack tip stresses for a homogeneous material have been presented in Sections 2.1 and 2.2; these results are
also recovered using a path-independent integral. The basic method was ®rst used in dynamic elasticity by
Nilsson (1973). Following the approach initiated in elastostatics by Eshelby (1970), a Lagrangian is de-
duced in the Laplace transform domain in each material such that the Euler±Lagrange relations recover the
governing equations; the Lagrangian L, is

L � ÿ1
2

rzjuz;j

ÿ � qp2uzuz

�
: �3:1�

As this is de®ned in the transform domain this Lagrangian does not have the apparently obvious physical
interpretation, i.e., one would hope it was the transform of the physical energy density. Unfortunately, the
Lagrangian and pseudo energy momentum tensor involve products of Laplace transforms. The inverse
transform of a product of transforms is not the product of the inverse transforms; which would lead to the
obvious interpretation. But the inverse transform of a product is a convolution, hence, it is not clear what
the physical meaning is. When we consider the layer-half space con®guration of Section 2 this Lagrangian is
de®ned in 0 < y < b and we also need to de®ne a Lagrangian L�h� in b < y by Eq. (3.1) with appropriate
changes to material parameters. Initially, we treat a non-homogeneous half space and only need the ®rst of
these Lagrangians. The corresponding pseudo energy momentum tensor is

Plj � oL
ouz;j

uz;l ÿ Ldlj; �3:2�

again, unlike Eshelby's elastostatic energy momentum tensor the pseudo energy momentum tensor in the
Laplace transform domain does not have any obvious physical interpretation. The Lagrangian does not
depend explicitly on the space variable, and thus the integral, F1, de®ned as

F1 �
Z

S
P1jnj dS �3:3�

is zero provided that the path S does not enclose any singularities; nj is the unit vector normal to S (Fig. 3).
This integral is analogous to Rice's J integral (Rice, 1968) but is now also incorporating dynamic e�ects and
the non-homogeneous material variation.

For anti-plane strain, the stress intensity factor can be rapidly evaluated using this invariant integral.
Although it is important to realise that the technique only works neatly as a computational tool for spa-
tially constant applied stress or displacement boundary conditions along the horizontal (x) boundaries and
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for material variation in the y coordinate. In the more complicated situations found for in-plane elastic
problems mode coupling occurs at the crack tip and the method often leads to a representation for the sum
of the squares of the stress intensity factors (Section 5). In static elasticity theory, this all reduces to the
energy release rate, however we are currently in the Laplace transform domain, and it is unclear what
physical signi®cance, if any, these results have apart from neatly capturing the transformed stress intensity
factors.

In essence, the information near to the crack tip can be obtained by studying the far away ®eld; we
evaluate the integrals far from the crack tip and relate this to the stress intensity factors. The behaviour near
the tip of the crack is determined in terms of cylindrical polar coordinates �r; h� centred on the tip with
h � 0 ahead of the crack and the elastic material is in ÿp6 h6p; the stress is locally rzy � K�p�=
�2pr�ÿ1=2

cos �h=2�: The coe�cient K�p�, the stress intensity factor (in Laplace transform space), cha-
racterises the near tip singularity and here we shall extract it using the invariant integral. These near tip
®elds are used to evaluate the integral around GH (in path S).

To evaluate the stresses, we note that the derivatives with respect to x tend to zero as x! �1. As a
result, the governing equations become

drzy

dy
� p2q�y�uz; where rzy � l�y� duz

dy
: �3:4�

When treating spatial variations in the shear modulus or density the application of the Wiener±Hopf
method or numerical methods, to a semi-in®nite crack problem, may be di�cult. Currently much of the
non-homogeneous fracture mechanics literature concentrates upon static situations, e.g. Erg�uven and
Gross (1999). However, the path independent integral is ideally suited to dealing with special situations
(spatially constant loadings and material variation normal to the crack), and in fact the method gives
results for any variation of modulus. Some related static problems are considered for general l�y� in
Atkinson and Craster (1995b).

For analytic simplicity, as in Atkinson (1975), we make the further restriction that the density q varies in
such a way that q�y�=l�y� � cÿ2 a constant. Introducing the substitution v�y� � l1=2�y�uz�y� then enables
the governing Eq. (3.4) to be rewritten as

Fig. 3. The path, S, required for the application of the invariant integral in Section 3.
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dy2
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c2

�
� a�y�

�
; where a�y� � 1

4l
2

d2l
dy2

"
ÿ 1

l
dl
dy

� �2
#
: �3:5�

We now make some speci®c choices for the material variation. The ®rst choice, l�y� � a2 exp�2by�, where b,
a are constant, has the advantage that the resulting function a�y� is equal to b2. This results in the simple
solutions v�y� � A exp�ÿCy� � B exp �Cy�, where C � ��p=c�2 � b2�1=2

, for constants A, B determined by the
boundary conditions on y � 0 and y � a.

We now proceed to relate the integral around the crack tip to the known integrals around the body; the
only integrals that contribute to the invariant are along EF, AB, (and B0A0 in an elastic layer), and the points
at F and A along the crack faces. Performing the integrals we obtain

K�p� � F �p� C�sinh Ca� cosh Ca�
�C� b��C cosh Caÿ b sinh Ca�

"
� b

2�C cosh Caÿ b sinh Ca�2
#1=2

: �3:6�

It is perhaps surprising that the stress intensity factor is independent of the choice of a for this speci®c
loading. A related choice of l�y� in an in®nite body is a2 exp �2bjy ÿ aj�, which is a symmetric modulus
variation about the fracture plane, in this case the Laplace transform of the stress intensity factor for an
in®nite body is

K�p� � F �p� 2

C� b

� �1=2

: �3:7�

The stress intensity factors rescaled as K�t��p=8a�1=2
versus non-dimensional time ct=a are shown in Fig.

4; the Laplace transform (3.6) is inverted using an adaptation of the Fourier inversion routine described in
Atkinson and Craster (1992a). The ®gure compares moduli variations; the second variation is described
later. In panel (a) the modulus variations l�y� � a2 exp�2by� �±±� and l�y� � �by � a�2 �� � �� are shown for
b � 0:5=a, a � 1; the corresponding results for a crack in an in®nite material are shown by �± ± ±� and (� � �),
respectively. For further comparison the dashed-dotted line (± �) shows the results for constant l. The
rather striking changes in the stress intensity factor in Fig. 4(a) are caused by the waves re¯ected from the
surface reloading the crack; the re¯ections occur at equal values of ct=a since we have taken c to be
constant. In panel (b), the e�ect of a modulus variation, symmetric about the fracture plane, on the in-
tensity factor is shown for a crack in an in®nite material with b � 0:4=a, a � 1 and modulus variations
l�y� � a2 exp�2bjy ÿ aj� (Ð) and l�y� � �bjy ÿ aj � a�2 �� � ��, and otherwise as in panel (a).

Fig. 4. Rescaled stress intensity factors for di�erent moduli variations, see text for details.
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Increasing the value of b in these results leads to larger peaks in the stress intensity factor as the material
has decreasing rigidity in the layer between the crack and the surface; the net e�ect of which is to con-
centrate the wave energy near the surface and leads to a stronger reloading e�ect for waves re¯ected from
the surface. The sharp reloadings become less evident, and this can already be partly seen in Fig. 4(a).

In contrast to Fig. 4(b), the symmetric modulus variation is crudely speaking analogous to a rigid
boundary above and below the crack, we no longer obtain the sharp peaks due to the distinct reloadings
caused by the re¯ections from a rigid boundary, but rather we get a continual and gradual reloading which
causes the stress intensity factor to level o� to a constant value bÿ1=2.

To contrast with the earlier choice of an exponential variation we now choose a variation with algebraic
growth, l�y� � �by � a�2, which is also analytically rewarding. The stress intensity factor is shown in Fig. 4;
the details of the ®gure have been given and are not repeated. This modulus variation leads to a�y� � 0 so
that the solutions take the form v�y� � A sinh�py=c� � B cosh�py=c�. In general for l�y� � �by � a�n then
a�y� � n�nÿ 2�b2=4�by � a�2 and, therefore, in general we have to proceed numerically; this is not the case
for n � 2. Evaluating the integrals and relating the non-zero contribution to the integral around the crack
tip gives

K�p� � F �p� p
c

� �1=2 sinh �pa=c� � cosh �pa=c�
p
c � b

�ba�a�

� �
p
c cosh �pa=c� ÿ b

�ba�a� sinh �pa=c�
� �

24 351=2

: �3:8�

A related result in an in®nite material for a symmetric variation about the crack l�y� � �bjy ÿ aj � a�2 is
K�p� � F �p��2=�p=c� b=a��1=2

. Under Heaviside loading F �t� � H�t� this can be inverted to give an error
function K�t� � �2a=b�1=2

erf
������������
bct=a

p
. A comparison between this result and the result in an in®nite body is

made in Fig. 4(b), the symmetric modulus variation which have increasing shear moduli as one moves away
from the crack, have lower stress intensity factors as waves return to reload the crack from the regions with
higher rigidity. In contrast to the symmetric exponential loading, the stress intensity factor approaches a
constant value, �2a=b�1=2

, monotonically from below.
These solutions provide useful benchmark examples upon which numerical solutions can be tested. In

addition they demonstrate the e�ect of inhomogeneity can be to substantially amplify the stress intensity
factors after successive re¯ections reload the crack. Note that when b � 0, in both the cases, we have
considered in detail then the shear modulus is constant, l � a2, and we just recover the stress intensity
factor for a cracked half space. For small b (or y) then for both cases, provided a � 1, we ®nd
l�y� � 1� 2by and we are in a position to compare algebraic and exponential variations and as we might
expect the exponential growth leads to a stronger response with more noticeable peaks.

We now return to the layer-half space con®guration of Sections 2.1 and 2.2, we can generalise the stress
intensity factor results we have already obtained by using the invariant integral with a Lagrangian in the
half-space and layer: For convenience, assume that both the layer and half space are homogeneous, then
applying the invariant around the contour shown in Fig. 3 and evaluating the integrals along the sides of
the strip, one deduces that

K�p� � F �p� c
p cosh�pa=c�

� �1=2 l�h�c sinh�pb=c� � lc�h� cosh�pb=c�
l�h�c cosh�p�bÿ a�=c� � lc�h� sinh�p�bÿ a�=c�
� �1=2

: �3:9�

Some representative numerical results are shown in Fig. 5(a) where we have chosen some typical values for
the two free parameters b=a and lc�h�=l�h�c.

As an aside, the treatment of a layered-inhomogeneous material may, in certain considerations, be
approximated by the suitably adjusted treatment of an n-layered material. The full solution of the n-layered
problem is an arduous algebraic task since we are required to solve continuity conditions at each inter-
face, however, the invariant integral yields the stress intensity factors very rapidly by utilising simpli®ed
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continuity conditions and only the integrals over the layers as x!1. The following result is for two layers
above a half space, but may be routinely extended to several layers. The elastic layer in 0 < y < b1 (�b)
is now labelled by a subscript 1, and the second elastic layer in b1 < y < b2 is denoted by 2; the half space is
in b2 < y <1,

K�p� � F �p� c1

p cosh�pa=c1�
� �1=2 l2c1j1 sinh�pb1=c1� � l1c2j2 cosh�pb1=c1�

l2c1j1 cosh�p�b1 ÿ a�=c1� � l1c2j2 sinh�p�b1 ÿ a�=c1�
� �1=2

; �3:10�

where �b � b2 ÿ b1,

j1 � l2

c2

sinh
p�b
c2

 !
� l�h�

c�h�
cosh

p�b
c2

 !
; j2 � l2

c2

cosh
p�b
c2

 !
� l�h�

c�h�
sinh

p�b
c2

 !
: �3:11�

In this case, we have ®ve free parameters, b1=a and l1c�h�=l�h�c1, as before, and also b2=a, c1=c2, and
l1c2=l2c1.

The Laplace transforms (3.9) and (3.10) are again inverted numerically for the case F �t� � H�t�, and the
stress intensity factors rescaled as K�t��p=8a�1=2

versus non-dimensional time ct=a are shown in Fig. 5. The
rather striking changes in the stress intensity factor are, again, caused by the waves re¯ected from
the surface, and this time also interface(s), reloading the crack. In Fig. 5(a) the solid and dashed lines show
the stress intensity factor for positive and negative values of D (when bÿ a > a), respectively; either the
waves in the layer travel faster than those in the half space �±±� (the speci®c parameter values are that
b=a � 5=2, l � l�h�, and c � 2c�h�) or the wavespeed in the layer is slower than that of the half space �± ± ±�
(l � l�h� and 2c � c�h�). (The dotted line shows the result for D � 0 that corresponds to a crack in an in®nite
homogeneous body; the case q � q�h� and c � c�h�.) This illustrates how, if we ®x the material properties of
the layer, changes in the half space contribute to the near ®eld. In each case the ®rst re¯ection, that from the
surface y � 0 is identical, thereafter if the wavespeed of the half space is slower less energy is re¯ected
towards the crack and the stress intensity factor lies below the dotted (identical materials) line and vice-
versa if the half space is faster then it lies above. It is worth noting, that changing the boundary conditions
on the crack and on the free surface, may signi®cantly alter the properties of the stress intensity factor.

Finally, in Fig. 5(b), waves are re¯ected from the surface (y � 0) and the interfaces, y � b1, y � b2 at
intervals c1t=a � 2, c1t=a � 2�b1=aÿ 1�, and c1t=a � 2�b2=aÿ b1=a�c1=c2 � 2�b1=aÿ 1�, respectively, and
combine to generate re¯ections at all intervals of c1t=a. In the ®gure, b2=a and c1=c2 are chosen so that the
lower layer ®rst contributes at c1t=a � 5 and, for ease of presentation, so that the re¯ections occur at integer
values of c1t=a. (b1=a � 5=2, b2=a � 4, c1=c2 � 2=3, and l1c�h�=l�h�c1 � 1=2; either l1c2=l2c1 � 4 �±±� or

Fig. 5. Rescaled stress intensity factors for one or two layers above a half space; see text for details.
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l1c2=l2c1 � 1=4 �ÿ ÿ ÿ� and the (� � �) shows the result when materials 1 and 2 are identical.) In this ®gure,
we compare the ratios of the moduli in the layers for a ®xed ratio of their wavespeeds and demonstrate how
similar energy distributions take place.

The semi-in®nite result (in an in®nite body) is given by the (� ±) in both panels of Fig. 5.
To explicitly identify the re¯ections that contribute to the near ®eld expression (3.9) gives

K�p� � F �p� 2c
p

� �1=2X1
i�0

�2i�!Dieÿ2p�bÿa�i=c

22i�i!�2
X1
j�0

�ÿ1�j�1�2j�!Djeÿ2pbj=c

�2jÿ 1�22j�j!�2
X1
k�0

�ÿ1�k�2k�!eÿ2pak=c

22k�k!�2 ; �3:12�

which corresponds to the value of K2 that is deduced from Eq. (2.7). Note that the sign of K cannot be
determined without additional information; nonetheless this provides a useful independent check upon one
part of the analysis.

We can expand expression (3.12) in orders of the exponential, and this enables us to perform each
Laplace inversion term by term to reconstruct the solution in real time explicitly as an in®nite series; in
particular when F �t� � H�t� and D � 0, we obtain

K�t� � 2
2c
p

� �1=2X1
k�0

�ÿ1�k�2k�!�t ÿ 2ka=c�1=2H�t ÿ 2ka=c�
22k�k!�2 : �3:13�

This is consistent with the solution found numerically. In addition writing the ®rst terms in the series,

K�t� � 2
2

p

� �1=2

�ct�1=2H�ct�
�

ÿ 1

2
�ct ÿ 2a�1=2H�ct ÿ 2a� � 3

8
�ct ÿ 4a�1=2H�ct ÿ 4a� � � � �

�
; �3:14�

we can identify these with the coe�cients of the singular ®elds found iteratively in Eqs. (2.18), (2.24), and
(2.28) i.e. K�t� � K�0;0��t� � K�0;1��t� � K�0;2��t� � � � � In Fig. 5(a), the dotted line for K�t� in the interval
0 < ct < 6a is given by the ®rst three terms in Eq. (3.14).

4. Weight functions

We have the explicit solution for our model problem of Section 2.1 when the stress loading on the crack
is of a simple form; the purpose of this section is to identify the stress intensity factor for any loading using
weight functions either for the exact solution, or for the iterative method. Other authors (Thau and Lu,
1971) have utilised iterative methods for related problems; the weight function method carries across to
those problems too.

The reciprocal theorem, assuming no body forces are present, isZ
S
�r�ijui ÿ riju�i �nj dS � 0 �4:1�

with nj the outward pointing normal to the closed surface S. The starred and unstarred ®elds are inde-
pendent solutions of the governing equations in the chosen geometry; the starred ®eld is a specially chosen
®eld typically more singular at the crack tip than the physically relevant solution and satisfying zero
boundary conditions, that is, it is an eigensolution. Each term in Eq. (4.1) is taken to be in the Laplace
transform domain.

For the eigensolution, we consider stresses that are unphysically singular, O�rÿ3=2�, at the crack tip so
that in Fourier transform space r�ÿ � O�n1=2

ÿ � as jnj ! 1:

r�ÿ � 21=2iÿ1=2
ÿ n1=2

ÿ K�; U �� �
23=2

l
i1=2
� nÿ1=2

� K�: �4:2�
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In our exact formulation of Section 2.1, the functional equation for the eigensolutions is

l
c�U ��
Q�

� ÿQÿr�ÿ
cÿ
� C � 2i1=2

� K�; �4:3�

C is an arbitrary constant which is determined by Liouville's theorem. The value of C is found by com-
parison with the known asymptotic form of the near crack tip stresses in Eq. (4.2). Using the reciprocal
theorem along a contour applied around the crack tip; the contour then goes along the crack faces and is
closed in a large circular arc at in®nity,

K
��p�K�p� � l

Z 1

0

rzy�x; a; p�u�z �x; a; p�dx: �4:4�

As u�z emerges from Eq. (4.3), we have a formula for K�p�:

K�p� � 1

2p
i1=2
�

Z 1

0

rzy�x; a; p�
Z 1

ÿ1

Q�eÿinx

c�
dndx: �4:5�

The application of this formula to the full solution involving product splits of Q is not a trivial calcu-
lation. None the less one can do so and recover the general formula found earlier Eq. (2.9).

We can again proceed in an iterative manner and as a ®rst step this reduces to

l
21=2

c�U ��0;0�� � ÿ21=2 r��0;0�ÿ
cÿ
� C � 2i1=2

� K�; �4:6�

the formula for the stress intensity factor in this case is given by

K
�0;0��p� � 1

2p
�2i�1=2

�

Z 1

0

rzy�x; a; p�
Z 1

ÿ1

eÿinx

c�
dndx: �4:7�

The particular (Heaviside) loading chosen in the earlier analysis may be recovered using the Fourier
transform results given in Appendix A; namely K

�0;0� � F �p��2c=p�1=2
. The point of the weight function is

that having obtained the solution once for a speci®c loading, we can utilise the same method to generate
eigensolutions; the primary e�ort in any solution is the factorisation of the `kernel' function Q. We now
choose a loading that is no longer `uniform' along the crack faces, for instance an exponential loading like
rzy � F �t� exp �ÿkx�, that decays with distance along the crack for positive k, in which case

K
�0;0��p� � F �p� 2

p=c� k

� �1=2

�4:8�

and when F �t� � H�t� we can ®nd K�0;0��t� � �2=k�1=2
erf

������
kct
p

. The uniform loading treated in the previous
sections is a special case of this for k � 0 and we can recover the earlier stress intensity factors.

So far the results have e�ectively been for a crack in an in®nite body; that is the crack is unaware of
either the surface or the interface. Next the solutions we have just derived are used to drive the `reloading'
of the unphysically singular crack,

l
21=2

c�U ��0;1�� � 2i1=2
� Q�0;1�� K� � ÿ21=2 r��0;1�ÿ

cÿ
ÿ 2i1=2

ÿ Q�0;1�ÿ K� � 0 �4:9�

using Q�0;1�� � O�1=n� ! 0 as jnj ! 1. At ®rst sight, it is unclear that the stress or displacement ®eld has the
correct too singular behaviour. However if, for instance, we consider the stresses, r� � r��0;0� � r��0;1� � � � �,
then this expression is still O�n1=2� and thus after inversion to the physical domain is still too singular. The
stress intensity factor taking into account the ®rst re¯ection can be found again from applying the recip-
rocal theorem, and is
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K
�0;1��p� � ÿ 1

2p
�2i�1=2

�

Z 1

0

rzy�x; a; p�
Z 1

ÿ1
Q�0;1��

eÿinx

c�
dndx; �4:10�

this formula reduces to Eq. (2.24) under a Heaviside loading, making a change of order of integration and
then capturing the residue at n � 0 by closing in the upper half plane.

For further illustration, we again take an exponential loading, exp�ÿkx� along the crack faces in which
case

K
�0;1��p� � ÿF �p� 2

p=c� k

� �1=2
1

2
eÿ2pa=c; �4:11�

and whose inversion for F �t� � H�t� is K�0;1��t� � ÿ1=2�2=k�1=2
erf

���������������������
k�ct ÿ 2a�p

H�ct ÿ 2a�. In Fig. 6 a
comparison is made between a uniform and an illustrative non-uniform (exponential) loading for the stress
intensity factor. As k increases the loading decays more rapidly with distance from the crack tip, and the
resultant e�ects on the crack tip stresses are reduced; this is re¯ected in the reduced stress intensity factor
values.

The next solution is given in terms of Q��0;2� � Q�0;1�� Q�0;1� � Q�0;2� ÿ Q�0;1�ÿ �0�Q�0;1�, where Q�0;2� is given in
Eq. (2.25),

K
�0;2��p� � ÿ 1

2p
�2i�1=2

�

Z 1

0

rzy�x; a; p�
Z 1

ÿ1
Q��0;2��

eÿinx

c�
dndx; �4:12�

for a uniform loading a single residue calculation again recovers our earlier solution. The stress intensity
factor for an exponential loading after inversion (F �t� � H�t�), shown in Fig. 6, is K�0;2��t� � 3=8�
�2=k�1=2

erf
���������������������
k�ct ÿ 4a�p

H�ct ÿ 4a�. The combination of formulae K�0;0��t� � K�0;1��t� � K�0;2��t� � � � � gives
a representation for the stress intensity factors which is exact within the time window for which the last

Fig. 6. The stress intensity factors for an exponential loading �±±� exp�ÿkx� (k � 0:5=a) and for a uniform loading (± �); also shown are

the solutions for a crack in an in®nite body.
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of these is valid. The weight function for waves re¯ected from the interface between the layer and half space
also follows in a similar fashion.

5. In-plane loading

Despite the anti-plane problem of the previous sections being of some independent interest, we are
usually more interested in the analogous in-plane problems which we outline in this section. Here there is
little success to be had from tackling the problem head-on, unless one wishes to proceed numerically,
because of the matrix Wiener±Hopf equation that emerges, however the iterative approach, that we have
been advocating so far, is still applicable. There the application of the Cagniard±de Hoop method again
avoids any potentially di�cult or awkward evaluation of a Fourier and Laplace inverse integral that
typically contains a Wiener±Hopf split function. Although the continual reloading of the crack becomes
progressively harder to describe.

5.1. Formulation

The problem is already complicated enough without an elastic layer so we only treat a single homo-
geneous medium with an overlying ¯uid: In the region y > 0 is an isotropic linear elastic material and in
y < 0 is a compressible ¯uid. The responses of the two half spaces are coupled together through the
continuity boundary conditions along the interface y � 0, these are discussed following Eq. (5.2). A Car-
tesian coordinate system is again adopted with x1; x2 corresponding to x; y.

The elastic material has (constant) Lam�e constants k, l, and density q. The stresses rij in the material are
related to the displacements ui via

rij � k�kkdij � 2l�ij; where �ij � 1
2
�ui;j � uj;i�; �5:1�

the comma denoting di�erentiation with respect to xi. The governing equations are the equilibrium
equations rij;j � q�ui, where the notation�denotes double partial di�erentiation with respect to time. In this
case the analysis is most easily performed by utilising the displacement potentials / and w where the
displacement u is u � r/�r� wẑ, where ẑ is the unit vector in the z direction. The wave speeds cd , cs are
de®ned in terms of the material parameters as c2

d � k� 2l=q, c2
s � l=q. The subscripts d and s denote the

variables associated with the dilatational and shear waves respectively.
The compressible ¯uid in y < 0 is e�ectively an elastic material that supports no shear stresses, thus

rij � kf �kkdij; where the ¯uid has density qf and compressional modulus kf . The governing equations are
rij;j � q�ui again, and we introduce a third displacement potential v such that the displacement u is u � rv.
The compressional wavespeed of the ¯uid is de®ned as c2

o � kf=qf .
It is useful to de®ne the following c functions that occur throughout the analysis: cq�n; p� �

�n2 � p2=c2
q�1=2

for q � d, s, o, r where cr is the Rayleigh wavespeed. A coupling parameter � occurs
throughout the analysis and is de®ned as � � qf co=qcd . The assumption that the compressional wavespeed
of the ¯uid is less than the shear wavespeed of the solid is taken so that cd > cs > co.

The following boundary conditions are taken on y � a, ahead of, and on, the crack x > 0

suxt � suyt � 0; x < 0; rxy � 0; ryy � F �t�H�x�; x > 0; �5:2�
and the stresses rxy , ryy are continuous across y � a: srxyt � sryyt � 0: In addition, the continuity boundary
conditions

sryyt � 0; rxy � 0; suyt � 0 �5:3�
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are taken on the interface y � 0, where the braces s t denote the jump in a quantity across the interface;
both the stresses ryy and the normal displacement uy are continuous across y � 0. The ¯uid supports no
shear stresses, thus rxy � 0 on y � 0. For convenience we have, again, taken a spatially uniform loading of
the crack faces.

5.2. Transform solution

Once again we apply Fourier and Laplace transforms, this time with the following half-range Fourier
transforms: the transform of the unknown stresses, rxy and ryy , on y � a, x < 0,

sÿ�n; a; p� �
Z 0

ÿ1
rxy�x; a; p�einx dx; rÿ�n; a; p� �

Z 0

ÿ1
ryy�x; a; p�einx dx; �5:4�

and the transform of the unknown jump in the displacements, ux and uy , across y � a, x > 0,

V��n; a; p� �
Z 1

0

ux�x; a�; p�� ÿ ux�x; aÿ; p��einx dx;

U��n; a; p� �
Z 1

0

uy�x; a�; p�
� ÿ uy�x; aÿ; p�

�
einx dx:

�5:5�

So far the problems treated have resulted in a single Wiener±Hopf equation like

P �f�X��f� � Q�f� � X0ÿ�f�; �5:6�
and in order to rearrange this equation into the standard Wiener±Hopf form we require only the product
factorisation of P �f� � P��f�Pÿ�f�. In the present case we obtain a coupled system of two Wiener±Hopf
equations and to proceed we need a matrix factorisation. Unfortunately, the components of the matrix do
not fall into any of the classes amenable to exact factorisation, and we require some numerical, approxi-
mate, or asymptotic method to provide it.

The resulting Wiener±Hopf matrix is

U�
V�

� �
� a11 a21

a12 a22

� �
rÿ � ��

sÿ

� �
; where �� � F �p�

in�
; �5:7�

much of the analysis is relegated to the appendices. The expressions for aij are lengthy and are omitted here;
they are written in Appendix C, alternatively we can use the language of generalised ray theory to piece
together the matrix. It is our aim to split this equation into a series of elementary Wiener±Hopf equations
each of exponential order exp �ÿ2mcdaÿ 2ncsa�. This corresponds to m compressional and n shear re¯ec-
tions against the crack and the ¯uid-solid interface. The properties of aij in a Taylor expansion, required to
formulate a series of Wiener±Hopf equations are given in Appendix C.

An alternative to approaching the matrix problem head-on is to interpret each reloading separately
(Section 2.3). If we do so here, and use displacement potentials, then the potentials that are generated by the
®rst compressional wave that is re¯ected from the interface are

/ � Rppecd a
ÿ �Rspecsa

�
eÿcd y ; w � Rpse

cd a
ÿ �Rsse

csa
�
eÿcsy ; �5:8�

by iteratively constructing those potentials that arise after each re¯ection one can construct the matrix. In
addition if one has, say, a crack obliquely aligned to an interface this method by-passes the necessity of
constructing a formal Wiener±Hopf matrix equation. These potentials neatly encapsulate the re¯ection
coe�cients (Rpp, etc.) that one expects to emerge from a generalised wave expansion and the same func-
tional equations ultimately emerge; this is both algebraically and conceptually easier than dealing with a
matrix.
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The notation employed in Section 2 is again adopted; the arguments n and p are dropped whenever
possible. The zero order Wiener±Hopf equation is equivalent to the symmetric problem for a semi-in®nite
crack in an in®nite elastic material, and the corresponding anti-symmetric equation yields s�0;0�ÿ � 0:

lRU �0;0�� � ÿ2cd
p2

c2
s

�r�0;0�ÿ � ���; lRV �0;0�� � ÿ2cs
p2

c2
s

s�0;0�ÿ : �5:9�

In these formulae R is the standard Rayleigh function, R�n; p� � �n2 � c2
s �2 ÿ 4n2cdcs. In order to rearrange

the symmetric equation into the usual Wiener±Hopf form this function is split into the product of �
functions. To this end we introduce the function L�n; p� �L��n; p�Lÿ�n; p� de®ned by Eq. (B.5); the
relevant details and expressions are given in Appendix B. Rearranging this functional equation so that the
left and right hand sides are analytic in the � and ÿ regions (de®ned following (2.3)), Eq. (5.9) becomes

ÿ cdÿ�n; p�
c2

rÿ�n; p�Lÿ�n; p� r
�0;0�
ÿ ÿ �� cdÿ�n; p�

c2
rÿ�n; p�Lÿ�n; p�

�
ÿ cdÿ�0; p�

c2
rÿ�0; p�Lÿ�0; p�

�
� l 1

�
ÿ c2

s

c2
d

�
c2

r��n; p�L��n; p�
cd��n; p�

U �0;0�� � �� cdÿ�0; p�
c2

rÿ�0; p�Lÿ�0; p� � R�n; p�: �5:10�

Analytic continuation may now be invoked to determine that both sides of the functional equation are
everywhere equal to the same analytic function, R�n; p�. The known edge conditions (i.e. again, the stresses
are O�rÿ1=2� there) are now used to determine that this function is in fact zero. This now yields the following
expression for the unknown half-range transform, r�0;0�ÿ

r�0;0�ÿ � �� cdÿ�0; p�c2
rÿ�n; p�Lÿ�n; p�

cdÿ�n; p�c2
rÿ�0; p�Lÿ�0; p�

�
ÿ 1

�
; �5:11�

where �� � F �p�=in�, with a similar result for U �0;0�� .
The behaviour of the stresses near the crack tip may be extracted (using asymptotic results in Appendix

B) from Eq. (5.2) as jnj ! 1, for x < 0:

r�0;0�yy �x; a; t� � Lÿ1 F �p� cs

cd

� �
2 c2

d ÿ c2
s

ÿ �
ppcd

� �1=2

�
"

ÿ x�ÿ1=2

#
; r�0;0�xy �x; a; t� � 0; �5:12�

this result is checked using an invariant integral for the mode I and mode II stress intensity factors KI and
KII in Section 5.3.

5.2.1. Reloading by the compressional wave
In this section we consider the reloading of the crack by the compressional wave re¯ected by the in-

terface. The same procedure may be followed, with some careful attention to the analysis, in extracting the
successive Wiener±Hopf equations, to ®nd both the compressional and shear wave®elds up to the next
arrival. For now we will only consider the ®rst reloading of the crack, which for some practical purposes
may be thought to be su�cient; further reloadings are brie¯y examined in Section 5.2.2. An interesting and
unexpected result near the crack tip falls out of this analysis and is more rigorously explored in Section 5.3.
In order to make use of the Wiener±Hopf equation of exponential order exp�ÿ2cda� we recall that s�0;0�ÿ � 0
and therefore from the matrix (5.7), or using the displacement potentials (5.8),

lRU �1;0�� � ÿ2cd
p2

c2
s

r�1;0�ÿ

�
ÿ 1

2
Rpp 1
�
ÿRN

pp

�
eÿ2cd a r�0;0�ÿ

ÿ � ��
��
: �5:13�

The coe�cients R and RN are related to the re¯ection coe�cients for an incident P or S wave on an in-
terface and a surface in the absence of the ¯uid respectively, and naturally occur in the equations. Their
precise form is given in Appendix C.
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The corresponding `anti-symmetric' Wiener±Hopf equation this time yields a non-zero s�1;0�ÿ (that we
expect to contribute in the next iteration) from

lRV �1;0�� � ÿ2cs
p2

c2
s

s�1;0�ÿ

�
ÿ 1

2
RppR

N
ps r�0;0�ÿ
ÿ � ��

��
: �5:14�

Our game plan now requires us to split equation (5.13) into the usual Wiener±Hopf form:

ÿ cdÿ�n; p�
c2

rÿ�n; p�Lÿ�n; p� r
�1;0�
ÿ ÿ ��H�n; p� cdÿ�0; p�

c2
rÿ�0; p�Lÿ�0; p� � l 1

�
ÿ c2

s

c2
d

�
c2

r��n; p�L��n; p�
cd��n; p�

U �1;0�� : �5:15�

We have taken in hand the sum split of H�n; p� into a � function and a ÿ function:

H�n; p� � ÿ1
2
Rpp�1ÿRN

pp�eÿ2cd �n;p�a � H��n; p� �Hÿ�n; p�; �5:16�
some consideration of the function reveals that H��n; p� � Hÿ�ÿn; p� and therefore 2H��0; p� �
H�0; p� � ��1ÿ ��=�1� ���eÿ2pa=cd , which will be seen to be useful later. The resulting functional equation
yields the unknown stress transform:

r�1;0�ÿ � ÿ�� cdÿ�0; p�c2
rÿ�n; p�Lÿ�n; p�

cdÿ�n; p�c2
rÿ�0; p�Lÿ�0; p� Hÿ�n; p�� ÿHÿ�0; p��; �5:17�

and we extract the stress intensity factor by employing asymptotic result Hÿ�n; p� ! O�1=n� as n!1, i.e.

r�1;0�yy �x; a; t� � Lÿ1 F �p� cs

cd

� �
2 c2

d ÿ c2
s

ÿ �
ppcd

� �1=2

Hÿ�0; p��
"

ÿ x�ÿ1=2

#
;

Hÿ�0; p� � 1

2

�1ÿ ��
�1� �� e

ÿ2pa=cd : �5:18�

We may now use this result to ®nd the mode I stress intensity factor, KI�p�. In addition, the mode II stress
intensity factor may be found, in a similar manner, by ®rst setting

U�n; p� � ÿ csÿ
2cdÿ

RppR
N
pse
ÿ2cd �n;p�a � U��n; p� � Uÿ�n; p�: �5:19�

The functional equation then yields

s�1;0�ÿ � ÿ�� cdÿ�0; p�c2
rÿ�n; p�Lÿ�n; p�

csÿ�n; p�c2
rÿ�0; p�Lÿ�0; p�

Uÿ�n; p�� ÿ Uÿ�0; p��; �5:20�

and we may extract the stress intensity factor utilising Uÿ�n; p� � O�1=n� as

r�1;0�xy �x; a; t� � Lÿ1 F �p� cs

cd

� �
2 c2

d ÿ c2
s

ÿ �
ppcd

� �1=2

Uÿ�0; p��
"

ÿ x�ÿ1=2

#
; Uÿ�0; p� � 0; �5:21�

as U�0; p� � U��0; p� � 0. As a consequence of this result the mode II stress intensity factor is zero, at least
until the next wave reloads the crack; without the ¯uid loading and for a stationary crack a similar result is
found by Tsai and Ma (1997). This is consistent with the invariant integral that we use in Section 5.3; there
we conclude that the zero mode II intensity factor is a result of the speci®c stress loading we have taken on
the crack faces.

We may pursue a modi®ed Cagniard method again to explicitly determine the stress ®elds anywhere in
the ¯uid or solid, using these results for unknown transforms and closely following the analysis in Section
2.2. Alternatively, as it is this the case here, we may further investigate the stress intensity factors. We have
seen, when treating the anti-plane example, that this is often best achieved using an invariant integral. First,
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we brie¯y examine the e�ect near the crack tip, of some other waves reloading the crack using our iterative
approach.

5.2.2. Reloadings by other waves
The crack is also reloaded by mode-converted and shear waves re¯ected by the interface whose con-

tributions to the stress ®eld may be found from the following functional equations:
· SP wave

lRU �1;1�a� � ÿ2cd
p2

c2
s

r�1;1�aÿ

�
ÿ 1

2
RpsR

N
speÿcd aÿcsa r�0;0�ÿ

ÿ � ��
��
;

lRV �1;1�a� � ÿ2cs
p2

c2
s

s�1;1�aÿ

�
� 1

2
Rps 1
ÿ �RN

ss

�
eÿcd aÿcsa r�0;0�ÿ

ÿ � ��
��

;

�5:22�

· PS wave

lRU �1;1�b� � ÿ2cd
p2

c2
s

r�1;1�bÿ

�
ÿ 1

2
RspR

N
pse
ÿcd aÿcsa r�0;0�ÿ

ÿ � ��
��
;

lRV �1;1�b� � ÿ2cs
p2

c2
s

s�1;1�bÿ

�
ÿ 1

2
Rps 1
ÿ ÿRN

ss

�
eÿcd aÿcsa r�0;0�ÿ

ÿ � ��
��

;

�5:23�

· SS wave

lRU �0;1�� � ÿ2cd
p2

c2
s

r�0;1�ÿ

�
� 1

2
Rss 1
ÿ �RN

ss

�
eÿ2csa r�0;0�ÿ

ÿ � ��
��
;

lRV �0;1�� � ÿ2cs
p2

c2
s

s�0;1�ÿ

�
ÿ 1

2
RssR

N
pse
ÿ2csa r�0;0�ÿ

ÿ � ��
��
:

�5:24�

There are two mode-converted waves (SP and PS) that reload the crack and some physical considerations
are required to extract these equations separately from the matrix expansion (C.9)±(C.11) in Appendix C.
In each of these Eqs. (5.22)±(5.24), the function to be split in order to make the correct combination of �
and ÿ functions is somewhat akin to U de®ned in Eq. (5.19) in that it is zero at the pole situated at n� � 0�.
Then, as in that case, some consideration of the � functions implies that they too are zero. Ultimately, this
means that both the mode I and mode II stress intensity factors are zero for each of these successive re-
loadings.

A more complete picture for the stress intensity factors is given in Section 5.3. That section suggests that
we only expect to ®nd a non-zero contribution near the crack tip from purely compressional reloadings on
the crack. This multiply re¯ected wave becomes increasingly di�cult to describe in our iterative language.
However, there are simpli®cations that occur in the limit as n!1 that we can take advantage of to ®nd
KI�p� directly. The functional equation in this case is

lRU �2;0�� � ÿ2cd
p2

c2
s

r�2;0�ÿ

�
ÿ 1

2
Rpp 1
�
ÿRN

pp

�
eÿ2cd ar�1;0�ÿ ÿ 1

2
RppR

N
speÿ2csas�1;0�ÿ

ÿ 1

2
RppR

N
ppRpp 1

�
ÿRN

pp

�
eÿ4cd a r�0;0�ÿ

ÿ � ��
��
: �5:25�

so that the equality of a � and ÿ function is ultimately given in terms of the sum split of W:
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W � 1

2
Rpp 1
�
ÿRN

pp

�
eÿ2cd a Hÿ�n; p�� ÿHÿ�0; p�� � cdÿ

2csÿ
RppR

N
speÿ2csa Uÿ�n; p�� ÿ Uÿ�0; p��

ÿ 1

2
RppR

N
ppRpp 1

�
ÿRN

pp

�
eÿ4cd a

� W��n; p� �Wÿ�n; p�; �5:26�
the stress intensity factor is found by evaluating Wÿ�0; p� � IW � Hÿ�0; p�� �2, the other pieces of W do not
contribute. The integral IW is found to be

IW � 1

2pi

Z 1�id

ÿ1�id
H�g; p�Hÿ�g; p� dg

g
� 1

8

1ÿ �
1� �

� �2

eÿ4pa=cd ; �5:27�

and this result gives the value of KI, also found in the following section.

5.3. Invariant integral

In the previous section, we observed that the mode II intensity factor for this speci®c loading is zero to
O�eÿ2cd a�. This is perhaps unexpected and is veri®ed in this section using an invariant integral, together with
some extensions to non-homogeneous media. More general loadings, using a weight function, are not
considered here but could be treated as in Section 4.

Following the approach used in Section 3 a Lagrangian is, this time, deduced in each half space (¯uid
and solid) such that the Euler±Lagrange relations recover the governing equations. In the elastic material,
the Lagrangian L is de®ned as

L � ÿ1
2

rijui;j

ÿ � qp2uiui

�
; �5:28�

and in the ¯uid half space L� f � is the same expression with superscripts � f � used to denote displacements
and stresses in the ¯uid and q replaced by qf . The pseudo energy momentum tensor Plj is formed in the
usual manner, i.e.

Plj � oL
oui;j

ui;l ÿ Ldlj: �5:29�

This pseudo energy momentum tensor has Plj;j � 0 so that the integrals de®ned by Fl are invariant. We
should note, see Atkinson and Craster (1995a), that closing a contour around a crack tip gives a term in-
volving K

2

I � p� � K
2

II� p� and the physical signi®cance of this result is not clear. Nevertheless, this is a
valuable check on our, or further, numerical work. The designation I or II indicates the independent
contribution due to crack extension in mode I or mode II.

The integrals de®ned as

F1 �
Z

S
P1jnj dS �

Z
S

�
ÿ rijnjui;1 � 1

2
rijui;j

ÿ � qp2uiui

�
n1

�
dS �5:30�

are zero provided the path S (Fig. 7) does not enclose any singularities and the path remains in the material
for which P1j is de®ned. In this formula nj is the unit vector normal to S. The integral F1 � F1 � F �f �1 is
considered around the contour shown in Fig. 7; the paths in the ¯uid and the solid have the interface in
common. Near edge ®elds are used to evaluate the integral around GH in Fig. 7. The only other integrals
that contribute to the invariant are along EF, AB, and F 0E0 (in the ¯uid), and the points at F and A along
the crack faces. The stresses at a crack tip are singular, i.e. r � KG�h�rÿ1=2, where r and h are polar co-
ordinates based at the crack tip; see Atkinson and Craster (1995b) among others.

R.V. Craster, D.P. Williams / International Journal of Solids and Structures 38 (2001) 685±716 709



Performing integrals gives

�1ÿ m2�
E

�K2

I � K
2

II��p� �
F

2�p�
p

1

2qcd
�� � 1�

cosh pa
cd
� sinh pa

cd

� �
� cosh pa

cd
� sinh pa

cd

� � ; �5:31�

where E is Young's modulus and m is the Poisson's ratio; E and m are related to the shear modulus l and the
wavespeeds cd , cs by �1ÿ m2�=E � c2

d=4l�c2
d ÿ c2

s �. The stress intensity factor in 0 < cdt=a < 2 is the ®rst
term in the expansion,

KI�p� � 2F �p� cs

cd

� �
c2

d ÿ c2
s

pcd

� �1=2

1

"
� 1

2

1ÿ �
1� �

� �
eÿ2pa=cd � 3

8

1ÿ �
1� �

� �2

eÿ4pa=cd � � � �
#
: �5:32�

This result corresponds to the value of KI that is deduced from Eq. (5.12). The second term is also con-
sistent with Eq. (5.18). This provides a useful independent check upon one part of our analysis. It is
noteworthy that these results are the same as those we would obtain if we had `pre-fractured' the plane
y � a, and therefore rxy � 0 for all x along y � a. In that case, one only extracts a mode I stress intensity
factor KI using the invariant rather than the sum of the squares of both intensity factors. Apart from a term
which comes from the time dependence of the crack loading, the result in Eq. (5.31) only includes the
compressional wavespeed suggesting that no shear waves reload the crack in such a way as to induce
singular shear stresses at the crack tip. Hence, we conjecture that for the speci®c `opening' loading on the
crack then, in fact, KII is zero for all time. Further inspection of the iterative scheme con®rms this.

Similarly for a `shearing' loading on the crack, like ryy � 0, rxy � F �t� on y � a, x > 0, then we ®nd the
combination of stress intensity factors to be

�1ÿ m2�
E

�K2

I � K
2

II��p� �
F

2�p�
p

1

2qcs

cosh pa
cs
� sinh pa

cs

� �
sinh pa

cs

; �5:33�

and this time KI is zero.
The stress intensity factor �cs=cd��1ÿ c2

s=c2
d�1=2KR�t� � �K2

I �t� � K2
II�t��1=2�p=16a�1=2

versus non-dimen-
sional time cdt=a is shown in Fig. 8. In panel (a) of this ®gure, we compare the stress intensity factors under

Fig. 7. The path, S, required for the application of the invariant integral in Section 5.

710 R.V. Craster, D.P. Williams / International Journal of Solids and Structures 38 (2001) 685±716



moderate, � � 0:2 �±±�, and zero, � � 0 �± ± ±�, ¯uid loading, and we can see that the e�ect of the ¯uid is to
draw energy away leading to less re¯ected back towards the crack. In contrast to the anti-plane results in
Figs. 4 and 5 which were for a crack beneath a rigid surface, the stress continuity conditions on the interface
have reloaded the crack in such a way as to increase the stress intensity factor with each successive re-
loading. The result for a crack in an in®nite elastic material is shown by the dotted line (� � �).

The organisation of this section has primarily been to investigate the stress intensity factors of the
previous section, and hence, a homogeneous cracked elastic half-space coupled to an overlying ¯uid. But
there is nothing to stop us, bar some unpleasant algebra, from looking at non-homogeneous materials; for
simple analytical results the moduli variations in the y direction are best given speci®c forms. For example,
if we choose k�y� � k0e2by , l�y� � l0e2by , and kf �y� � kf 0e2bf y to vary in such a way that cd , cs, and co are all
constant, then the square of the stress intensity factors is

�1ÿ m2�
E

�K2

I �p� � K
2

II�p��

� F
2�p�

2�k� 2l��a�
1

�Cd � b�

"
ÿ �b� ECd� sinh Cda� Cd cosh Cda

b2 � EbCd ÿ C2
d

ÿ �
sinh Cdaÿ EC2

d cosh Cda

 !#
; �5:34�

where

E � kf 0�C0 ÿ bf �
�k0 � 2l0�Cd

�� � when b � bf � 0�; �5:35�

and we have de®ned Cd � �p2=c2
d � b2� and C0 � �p2=c2

o � b2
f �. As in Section 3, if we now choose

k�y� � k0e2bjyÿaj and l�y� � l0e2bjyÿaj in an in®nite elastic body then we ®nd for such a symmetric variation

KI�p� � 2F �p� cs

cd

� �
c2

d ÿ c2
s

�Cd � b�c2
d

� �1=2

: �5:36�

The stress intensity factor in Eq. (5.34) when b � 0:3=a, b0 � 0:1cd=coa, and � � kf 0cd=�k0 � 2l0�co � 0:2 is
shown in panel (b) of Fig. 8. The results in an in®nite body are also compared for this inhomogeneity (± ± ±)
and replacing the y dependence of each parameter by jy ÿ aj to make it symmetric about the crack (± �); the
dotted line is when the material is homogeneous as in panel (a). This result (Fig. 8(b)) again demonstrates
how the e�ect of inhomogeneity can be to increase or decrease the stress intensity factors. In the latter case,
when the material variation is such that the crack, in e�ect, appears to be within a strip bounded by rigid
walls. It is worth noting that the special situation of a crack centred in a strip (Atkinson and Craster, 1992b)

Fig. 8. Rescaled stress intensity factors for homogeneous and non-homogeneous materials; see text for details.
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with either symmetric, or anti-symmetric, loadings applied to the strip walls is a special case, here the
invariant extracts the stress intensity factor (and there is now only one factor due to the complete symmetry
or anti-symmetry of the problem) in a particularly neat and concise manner.

6. Conclusion

An e�cient method based on both physical considerations and an iterative approach to the underlying
Wiener±Hopf equation(s) for scattering by a crack is demonstrated in this study. In essence, the equation is
broken into smaller pieces, using generalised ray theory, that capture the wave®eld within a ®nite time
window. Of course it is necessary to pose and solve a series of Wiener±Hopf equations, and this procedure
can become progressively more involved.

To illustrate the scope of the method, we have applied it to both anti-plane and in-plane loadings of a
crack, and extracted the stress ®elds and the stress intensity factors. It is noted that for a speci®c class of in-
plane loadings on the crack, namely a spatially constant pure `opening' or `shearing', there is no com-
plementary shearing or opening piece of the stress intensity factors.

A second route taken in this paper is to use an invariant integral to extract the stress intensity factors
directly. This is, in part, an independent check on the results. It also permits some extensions to non-
homogeneous media, where our other approach is less feasible. Some illustrative results are given and it is
anticipated that the general methodology will carry over to problems of a harder nature. The e�ect of the
inhomogeneity is, of course, dependent on the precise nature of the variation as one moves away from the
crack, and we demonstrate some contrasting behaviour in the stress intensity factors dependent upon
whether the modulus decreases or increases with distance away from the fracture plane.

Speci®cally, for either stress free or rigid boundary conditions the reloading on the crack faces reinforces
the initial opening stress or it sti¯es the opening. The non-homogeneous moduli do this in a `continuous'
way rather than via the discrete re¯ections of a layered material.
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Appendix A. Fourier transform results

If F denotes the Fourier transform operator, then

F ÿ1 1

nn�1=2
�

 !
� �x�nÿ1=2H�x�

in�1=2
� C�n� 1=2� ; �A:1�

where n is an integer, and C�z� is the Gamma function de®ned to be C�n� 1� � R1
0

tneÿt dt.

Appendix B. Product splits

In Section 2.1, we have taken in hand the product split of Q�n; p� (see Eq. (2.5)). This function is split into
� and ÿ functions that are analytic and non-zero in the upper and lower complex n planes:
Q�n; p� � Q��n; p�Qÿ�n; p�,

712 R.V. Craster, D.P. Williams / International Journal of Solids and Structures 38 (2001) 685±716



logQÿ�n; p� � ÿ 1

2pi

Z 1�id

ÿ1�id

logQ�g; p�
gÿ n

dg logQ��n; p� � 1

2pi

Z 1ÿid

ÿ1ÿid

logQ�g; p�
gÿ n

dg �B:1�

for ÿd < Im�n� < d, where d is some small, positive, real number. It is adequate, in most cases, to compute
this product split numerically, and this is most easily performed using quadratures.

There is a useful limit as b!1 that permits some explicit formulae to be derived. In this case, the
function to be split into a product of � functions is Q��n; p� � ec�n;p�a= cosh�c�n; p�a�, and these be con-
structed analytically. The factorisation can be achieved by considering separately the factorisations of eÿca

and cosh ca, and has the familiar form (Noble, 1958),

1

Q��
�n; p� � eÿv�n;p�ÿw��n;p�

Y1
n�0

�1
h
� p2a2

nÿ1=2cÿ2�1=2 ÿ inanÿ1=2

i
einanÿ1=2 ; �B:2�

where anÿ1=2 � a=�nÿ �1=2��p, Q�ÿ�n; p� � Q���ÿn; p� and

w��n; p� �
a
p

n2

�
� p2

c2

�1=2

cosÿ1

�
ÿ i

nc
p

�
; wÿ�n; p� � w��ÿn; p�: �B:3�

In Eq. (B.2) v�n; p� is an arbitrary function chosen so that Q�� and Q�ÿ have polynomial behaviour at in®nity.
Thus, using well known properties of the gamma function, we choose

v�n; p� � ÿi
na
p

1

�
ÿ c� log

�
ÿ i

pc
2ap

��
� na

2
; �B:4�

where in Eq. (B.4) c is Euler's constant. In practice, we can avoid these splits by using the modi®ed
Cagniard method.

The Wiener±Hopf method in Section 5 requires the product split of the Rayleigh function, R�f�, suitably
rescaled. To split this Rayleigh function ®rst consider a new function L�f� (that appears in Section 5),

L�f� � �2f2 � k2�2 ÿ 4f2�f2 � 1�1=2�f2 � k2�1=2

2�k2 ÿ 1��f2 � k2
r �

; �B:5�

the product splits for R�f� follow directly from those of L�f�: L�f� �L��f�Lÿ�f�. By introducing the
branch cuts Re�f� � 0; 1 < jIm�f�j < k, L�f� is made analytic everywhere in this cut f plane. The fol-
lowing asymptotic property is useful: in the limit as jfj ! 1, L�f� ! 1�O�fÿ2�. These properties of L�f�
make the logarithmic function logL�f� analytic everywhere in the same cut f plane as L�f� and ensures
that the Cauchy integrals converge. Using Cauchy's theorem Lÿ�f� is determined explicitly as

logLÿ�f� � ÿ 1

p

Z k

1

tanÿ1 4s2�s2 ÿ 1�1=2�k2 ÿ s2�1=2

�k2 ÿ 2s2�2
" #

ds
s� if

; �B:6�

where L��f� �Lÿ�ÿf� and the branch of the inverse tangent is chosen so that 06 tanÿ1 /6 p=2. Some
further asymptotic properties of L��f� are useful when we come to consider the stress intensity factors: as
jfj ! 1 then L��f� ! 1, and L��0� � k2=�21=2�k2 ÿ 1�1=2kr�. Then we have

Rÿ�f� � 21=2�k2 ÿ 1�1=2c2
rÿ�n; p�Lÿ�n; p�; �B:7�

a rescaling by n � pf=c and k � cd=cs is required in the main text.
In more general di�raction problems the kernel function is split similar to the above fundamental

procedure, although often explicit formulae are not forthcoming.
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Appendix C. Re¯ection coe�cients and Wiener±Hopf notation

In the ®rst part to this appendix, the coe�cients R and RN are related to the re¯ection coe�cients for an
incident P or S wave on an interface and a surface in the absence of the ¯uid, respectively (the superscript N
denotes no ¯uid). The subscripts on R and RN follow the convention that the ®rst denotes the type of
incident wave and the second denotes the type of re¯ected wave.

There are related transmission coe�cients, and coe�cients given by incident waves from the ¯uid, but
these are not required in the application considered in the text.

In the following, the usual notation is used for the Rayleigh, R�n�, and Sch�olte, S�n�, functions and also
their complements r�n� and s�n�:

R�n� � n2
� � c2

s �n�
�2 ÿ 4n2cd�n�cs�n�; S�n� � R�n� � �cd�n�=co�n�;

r�n� � n2
� � c2

s �n�
�2 � 4n2cd�n�cs�n�; s�n� � r�n� ÿ �cd�n�=co�n�:

�C:1�

The Laplace transform parameter, p, dependence has been omitted for ease of presentation.
· Incident P wave:

Rpp � ÿ s�n�
S�n� ; Rps � 4incd�n��n2 � c2

s �n��
S�n� ; RN

pp � ÿ
r�n�
R�n� ;

RN
ps �

4incd�n��n2 � c2
s �n��

R�n� :

�C:2�

· Incident S wave:

Rsp � ÿ 4incs�n��n2 � c2
s �n��

S�n� ; Rss � ÿ S�n� � 8n2cs�n�cd�n�
S�n� ;

RN
sp � ÿ

4incs�n��n2 � c2
s �n��

R�n� ; RN
ss � ÿ

r�n�
R�n� :

�C:3�

In Section 5, the problem reduces to the solution of a Wiener±Hopf matrix (5.7):

U�
V�

� �
� a11 a12

a21 a22

� �
rÿ � ��

sÿ

� �
: �C:4�

It is unfortunately the case that the matrix terms aij become rather ugly, and as noted in the text we can
piece together the matrix in orders of the exponential using generalised ray theory. Alternatively, we can
deal with the matrix and perform a series of expansions. The latter route is taken here:

la11 � ÿcd
p2

c2
s

1

R

�
� 1

K
S
ÿ � seÿ2cd a ÿ �S � 8n2c2

s c
2
d�eÿ2csa ÿ �sÿ 8n2cscd�eÿ2�cd�cs�a��; �C:5�

where

K � SRÿ sreÿ2cd a ÿ �S � 8n2c2
s c

2
d�reÿ2csa � �sÿ 8n2cscd�Reÿ2�cd�cs�a � 32n2cscd�n2 � c2

s �2eÿ�cd�cs�a:

�C:6�
Note that in the case of a pre-fractured crack where the boundary condition ahead of the crack is rxy � 0 so
that the shear stresses are zero all along y � a, then the Wiener±Hopf equation (5.7) reduces to
U� � a11 rÿ � ��� �. The remaining components are as follows:
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la12 � ÿla21

� in
q2

R

�
ÿ 1

K
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we have introduced q1 � �n2 � c2
s � 2cscd� and q2 � �n2 � c2

s ÿ 2cscd� for convenience.
The leading exponential terms required in the text and relevant to the present article are given by a

Taylor's expansion. They are intricately connected with the re¯ection and transmission coe�cients but this
is, often, not transparent when each component is taken in turn:
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Similarly, the expressions for the stresses and displacements are recovered from an expansion in terms of
the displacement potentials.
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